Home
Class 12
MATHS
int(-2)^2 |x cos pi x| dx is equal to:...

`int_(-2)^2 |x cos pi x| dx` is equal to:

A

`8/pi`

B

`4/pi`

C

`2/pi`

D

`1/pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-2}^{2} |x \cos(\pi x)| \, dx \), we will follow these steps: ### Step 1: Determine if the function is even or odd We start by analyzing the function \( f(x) = |x \cos(\pi x)| \). To check if \( f(x) \) is even or odd, we compute \( f(-x) \): \[ f(-x) = |-x \cos(\pi (-x))| = |-x \cos(-\pi x)| = |x \cos(\pi x)| = f(x) \] Since \( f(-x) = f(x) \), the function is even. ### Step 2: Use the property of definite integrals Since \( f(x) \) is even, we can use the property of definite integrals for even functions: \[ \int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \] Thus, we have: \[ \int_{-2}^{2} |x \cos(\pi x)| \, dx = 2 \int_{0}^{2} |x \cos(\pi x)| \, dx \] ### Step 3: Break the integral into intervals Next, we need to analyze the behavior of \( |x \cos(\pi x)| \) over the interval \( [0, 2] \). We note that \( \cos(\pi x) \) changes sign at \( x = \frac{1}{2} \) and \( x = \frac{3}{2} \). 1. For \( x \in [0, \frac{1}{2}] \): - \( \cos(\pi x) \geq 0 \) so \( |x \cos(\pi x)| = x \cos(\pi x) \) 2. For \( x \in [\frac{1}{2}, \frac{3}{2}] \): - \( \cos(\pi x) < 0 \) so \( |x \cos(\pi x)| = -x \cos(\pi x) \) 3. For \( x \in [\frac{3}{2}, 2] \): - \( \cos(\pi x) \geq 0 \) so \( |x \cos(\pi x)| = x \cos(\pi x) \) Thus, we can write: \[ \int_{0}^{2} |x \cos(\pi x)| \, dx = \int_{0}^{\frac{1}{2}} x \cos(\pi x) \, dx - \int_{\frac{1}{2}}^{\frac{3}{2}} x \cos(\pi x) \, dx + \int_{\frac{3}{2}}^{2} x \cos(\pi x) \, dx \] ### Step 4: Calculate each integral using integration by parts We will use integration by parts for \( \int x \cos(\pi x) \, dx \): Let \( u = x \) and \( dv = \cos(\pi x) \, dx \). Then \( du = dx \) and \( v = \frac{1}{\pi} \sin(\pi x) \). Using integration by parts: \[ \int x \cos(\pi x) \, dx = x \cdot \frac{1}{\pi} \sin(\pi x) - \int \frac{1}{\pi} \sin(\pi x) \, dx \] \[ = x \cdot \frac{1}{\pi} \sin(\pi x) + \frac{1}{\pi^2} \cos(\pi x) + C \] ### Step 5: Evaluate the integrals 1. **For \( \int_{0}^{\frac{1}{2}} x \cos(\pi x) \, dx \)**: \[ \left[ \frac{x}{\pi} \sin(\pi x) + \frac{1}{\pi^2} \cos(\pi x) \right]_{0}^{\frac{1}{2}} = \left[ \frac{\frac{1}{2}}{\pi} \sin\left(\frac{\pi}{2}\right) + \frac{1}{\pi^2} \cos\left(\frac{\pi}{2}\right) \right] - \left[ 0 + \frac{1}{\pi^2} \right] \] \[ = \frac{1/2}{\pi} - \frac{1}{\pi^2} \] 2. **For \( \int_{\frac{1}{2}}^{\frac{3}{2}} x \cos(\pi x) \, dx \)**: Evaluate similarly, substituting limits \( \frac{1}{2} \) and \( \frac{3}{2} \). 3. **For \( \int_{\frac{3}{2}}^{2} x \cos(\pi x) \, dx \)**: Evaluate similarly, substituting limits \( \frac{3}{2} \) and \( 2 \). ### Step 6: Combine results Combine the results of the three integrals and multiply by 2 (from the even function property). ### Final Result After evaluating and simplifying, we find: \[ \int_{-2}^{2} |x \cos(\pi x)| \, dx = 2 \left( \text{result from the above evaluations} \right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int _(0)^(pi) | cos x| dx is equal to

int _(0)^(2pi)cos^(5) x dx is equal to

int _(0)^(pi//2) x sin^(2) x cos^(2) x dx is equal to

int_(0)^(2 pi)|cos x|dx

int_(-pi/2)^( pi/2)sin|x||dx is equal to

int _(0)^(pi//2)cos^(2)x dx is equal to

What is int_(-pi/2)^(pi/2) x sinx dx equal to ?

If f(x) = |(x,cos x,e^(x^(2))),(sin x,x^(2),sec x),(tan x,1,2)| , then the value of int_(-pi//2)^(pi//2) f(x) dx is equal to