Home
Class 12
MATHS
int sin mx dx is:...

`int sin mx dx` is:

A

m cos mx+c

B

`-m cos mx+c`

C

`-1/m cos mx +c`

D

`1/m cos mx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sin(mx) \, dx \), we can follow these steps: ### Step 1: Set up the integral Let: \[ I = \int \sin(mx) \, dx \] ### Step 2: Use substitution We will use the substitution \( u = mx \). Then, we differentiate \( u \) with respect to \( x \): \[ du = m \, dx \quad \Rightarrow \quad dx = \frac{du}{m} \] ### Step 3: Substitute in the integral Now, substitute \( u \) and \( dx \) into the integral: \[ I = \int \sin(u) \cdot \frac{du}{m} \] This simplifies to: \[ I = \frac{1}{m} \int \sin(u) \, du \] ### Step 4: Integrate \( \sin(u) \) The integral of \( \sin(u) \) is: \[ \int \sin(u) \, du = -\cos(u) + C \] where \( C \) is the constant of integration. ### Step 5: Substitute back for \( u \) Now, substitute back \( u = mx \): \[ I = \frac{1}{m} \left( -\cos(mx) + C \right) \] This simplifies to: \[ I = -\frac{1}{m} \cos(mx) + C \] ### Final Result Thus, the integral \( \int \sin(mx) \, dx \) is: \[ \int \sin(mx) \, dx = -\frac{1}{m} \cos(mx) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int sin 3x dx

int sin x * dx

int sin x | dx

int x.sin x dx

int sin(ax)dx

The value of int sin x^(@)dx is

int sin x^(0)dx