Home
Class 12
MATHS
int(-pi)^pi x^3 cos^3 x dx is:...

`int_(-pi)^pi x^3 cos^3 x dx` is:

A

0

B

`pi`

C

`pi/4`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-\pi}^{\pi} x^3 \cos^3 x \, dx \), we will use the properties of odd and even functions. ### Step-by-step Solution: 1. **Identify the function**: Let \( f(x) = x^3 \cos^3 x \). 2. **Check if the function is odd or even**: - A function \( f(x) \) is **even** if \( f(-x) = f(x) \). - A function \( f(x) \) is **odd** if \( f(-x) = -f(x) \). 3. **Calculate \( f(-x) \)**: \[ f(-x) = (-x)^3 \cos^3(-x) \] - Since \( \cos(-x) = \cos(x) \), we have: \[ f(-x) = -x^3 \cos^3 x \] - This simplifies to: \[ f(-x) = -f(x) \] 4. **Conclusion about the function**: Since \( f(-x) = -f(x) \), the function \( f(x) = x^3 \cos^3 x \) is an odd function. 5. **Use the property of definite integrals**: The property states that the integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-a}^{a} f(x) \, dx = 0 \quad \text{if } f(x) \text{ is odd} \] 6. **Apply the property**: \[ \int_{-\pi}^{\pi} x^3 \cos^3 x \, dx = 0 \] ### Final Answer: \[ \int_{-\pi}^{\pi} x^3 \cos^3 x \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_(-pi)^(pi)x^(3)cos^(3)xdx=?

(i) int_0^(pi//2) cos x dx (ii) int_(-pi//2)^(pi//2) cos x dx (iii) int_0^(pi//2) cos 2x dx

int_(0)^(pi//3) cos 3x dx=

int_(-pi)^( pi)(x^(5)+x cos x)dx

Evaluate : int_(-pi/3)^(pi/3)sin^3 x dx

int_(-pi)^( pi)sin x[f(cos x)]dx is equal to

int_(pi//6)^(pi//3)cos^(2)x dx=

int_(0)^(pi//6) cos x cos 3x dx

The value of int_(-pi)^(pi) sin^(3) x cos^(2)x dx is

The value of int_(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to