Home
Class 12
MATHS
int0^a f(a-x) dx=...

`int_0^a f(a-x)` dx=

A

`int_0^(2a) f(x) dx`

B

`int_(-a)^a f(x) dx`

C

`int_0^a f(x) dx`

D

`int_a^0 f(x) dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^a f(a-x) \, dx \), we can follow these steps: ### Step 1: Define the Integral Let \[ I = \int_0^a f(a-x) \, dx \] ### Step 2: Make a Substitution We will use the substitution \( b = a - x \). Then, differentiating both sides gives us: \[ dx = -db \] ### Step 3: Change the Limits of Integration Now, we need to change the limits of integration according to our substitution: - When \( x = 0 \), \( b = a - 0 = a \) - When \( x = a \), \( b = a - a = 0 \) Thus, the integral becomes: \[ I = \int_a^0 f(b) (-db) = \int_0^a f(b) \, db \] ### Step 4: Simplify the Integral Since the limits have changed, we can drop the negative sign: \[ I = \int_0^a f(b) \, db \] ### Step 5: Rename the Variable We can rename the variable \( b \) back to \( x \) (since the variable of integration is just a dummy variable): \[ I = \int_0^a f(x) \, dx \] ### Conclusion Thus, we have shown that: \[ \int_0^a f(a-x) \, dx = \int_0^a f(x) \, dx \] ### Final Answer The value of the integral \( \int_0^a f(a-x) \, dx \) is: \[ \int_0^a f(x) \, dx \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Prove that : int_(0)^(2a) f(x)dx=int_(0)^(a) f(x)dx+int_(0)^(a) f(x)dx+int_(0)^(a) f(2a-x)dx

prove that : int_(0)^(2a) f(x)dx = int_(0)^(a) f(x)dx + int_(0)^(a)f(2a-x)dx

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

If int_(0)^(2a) f(x)dx=int_(0)^(2a) f(x)dx , then

Let int_(0)^(a) f(x)dx=lambda and int_(0)^(a) f(2a-x)dx=mu . Then, int_(0)^(2a) f(x) dx equal to

Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to

If f(x) = f(a+x) and int_(0)^(a) f(x) dx = k, "then" int _(0)^(na) f(x) dx is equal to

If f(x) and g(x) be continuous functions in [0,a] such that f(x)=f(a-x),g(x)+g(a-x)=2 and int_0^a f(x)dx=k , then int_0^a f(x)g(x)dx= (A) 0 (B) k (C) 2k (D) none of these

Property 6: If f(x) is a continuous function defined on [0;2a] then int_(0)^(2)a=int_(0)^(a)f(x)dx+int_(0)^(a)f(2a-x)dx

int_0^(2a)f(x)dx is equal to 2int_0^af(x)dx b. 0 c. int_0^af(x)dx+int_0^af(2a-x)dx d. int_0^af(x)dx+int_0^(2a)f(2a-x)dx