Home
Class 12
MATHS
int0^(pi//2) (sin^(1//2)x)/(sin^(1//2)x+...

`int_0^(pi//2) (sin^(1//2)x)/(sin^(1//2)x+cos^(1//2)x) dx` is equal to

A

0

B

`pi/2`

C

`pi/3`

D

`pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin^{\frac{1}{2}} x}{\sin^{\frac{1}{2}} x + \cos^{\frac{1}{2}} x} \, dx, \] we can use a symmetry property of definite integrals. ### Step 1: Define the integral Let \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin^{\frac{1}{2}} x}{\sin^{\frac{1}{2}} x + \cos^{\frac{1}{2}} x} \, dx. \] ### Step 2: Change of variable Now, we will perform a change of variable. Let \( x = \frac{\pi}{2} - t \). Then, \( dx = -dt \). The limits change as follows: - When \( x = 0 \), \( t = \frac{\pi}{2} \) - When \( x = \frac{\pi}{2} \), \( t = 0 \) Thus, we have: \[ I = \int_{\frac{\pi}{2}}^0 \frac{\sin^{\frac{1}{2}}(\frac{\pi}{2} - t)}{\sin^{\frac{1}{2}}(\frac{\pi}{2} - t) + \cos^{\frac{1}{2}}(\frac{\pi}{2} - t)} (-dt). \] ### Step 3: Simplify the integrand Using the identities \( \sin(\frac{\pi}{2} - t) = \cos t \) and \( \cos(\frac{\pi}{2} - t) = \sin t \), we can rewrite the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{\cos^{\frac{1}{2}} t}{\cos^{\frac{1}{2}} t + \sin^{\frac{1}{2}} t} \, dt. \] ### Step 4: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_0^{\frac{\pi}{2}} \frac{\sin^{\frac{1}{2}} x}{\sin^{\frac{1}{2}} x + \cos^{\frac{1}{2}} x} \, dx \) 2. \( I = \int_0^{\frac{\pi}{2}} \frac{\cos^{\frac{1}{2}} x}{\sin^{\frac{1}{2}} x + \cos^{\frac{1}{2}} x} \, dx \) Adding these two integrals, we get: \[ 2I = \int_0^{\frac{\pi}{2}} \left( \frac{\sin^{\frac{1}{2}} x}{\sin^{\frac{1}{2}} x + \cos^{\frac{1}{2}} x} + \frac{\cos^{\frac{1}{2}} x}{\sin^{\frac{1}{2}} x + \cos^{\frac{1}{2}} x} \right) dx. \] ### Step 5: Simplify the combined integral The expression simplifies to: \[ 2I = \int_0^{\frac{\pi}{2}} \frac{\sin^{\frac{1}{2}} x + \cos^{\frac{1}{2}} x}{\sin^{\frac{1}{2}} x + \cos^{\frac{1}{2}} x} \, dx = \int_0^{\frac{\pi}{2}} 1 \, dx. \] ### Step 6: Evaluate the integral The integral evaluates to: \[ 2I = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] ### Step 7: Solve for \( I \) Dividing both sides by 2 gives: \[ I = \frac{\pi}{4}. \] ### Final Answer Thus, the value of the integral is \[ \int_0^{\frac{\pi}{2}} \frac{\sin^{\frac{1}{2}} x}{\sin^{\frac{1}{2}} x + \cos^{\frac{1}{2}} x} \, dx = \frac{\pi}{4}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sin^(2)x.cos^(2)x)dx is equal to

int_(0)^( pi/2)(1+sin x)^(1/2)dx

int 1/(sin^2x cos^2x )dx is equal to:

int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

The integral int((sin2x+cos^(2)x)dx)/(1+sin^(2)x(sin2x-cos^(2)x)) is equal to

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

int_(-pi//2)^(pi//2)(sin^(2n-1)x)/(1+cos^(2n)x)dx=

int_(0)^( pi/4)(x^(2)(sin2x-cos2x))/((1+sin2x)cos^(2)x)dx