Home
Class 12
MATHS
int (2x+7)^6 dx is equal to:...

`int (2x+7)^6` dx is equal to:

A

`(2x+7)^7/14+c`

B

`(2x+7)^6/14+c`

C

`(2x+7)^7/7+c`

D

`(-(2x+7)^7)/14+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (2x + 7)^6 \, dx \), we will use the substitution method. Here are the steps: ### Step 1: Substitution Let \( t = 2x + 7 \). ### Step 2: Differentiate Now, differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 2 \implies dt = 2 \, dx \implies dx = \frac{dt}{2} \] ### Step 3: Rewrite the Integral Substituting \( t \) and \( dx \) into the integral: \[ \int (2x + 7)^6 \, dx = \int t^6 \cdot \frac{dt}{2} \] This simplifies to: \[ \frac{1}{2} \int t^6 \, dt \] ### Step 4: Integrate Now, we can integrate \( t^6 \): \[ \int t^6 \, dt = \frac{t^{7}}{7} + C \] Thus, \[ \frac{1}{2} \int t^6 \, dt = \frac{1}{2} \cdot \left( \frac{t^{7}}{7} + C \right) = \frac{t^{7}}{14} + \frac{C}{2} \] ### Step 5: Substitute Back Now, substitute back \( t = 2x + 7 \): \[ \frac{(2x + 7)^{7}}{14} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int (2x + 7)^6 \, dx = \frac{(2x + 7)^{7}}{14} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int x^(2) sin x dx is equal to

int x sqrt(x+2)dx is equal to

int x^(2)dx is equal to:

The value of int(|x-2|+[x])dx is equal to

int (" In" x)^(-1) dx - int ("In" x)^(-2) dx is equal to

int(1+x^(2))/(x)dx is equal to: