Home
Class 12
MATHS
If int f(x) dx=log |tanx|+c find f (x)....

If `int f(x) dx=log |tanx|+c` find f (x).

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(x) \) given that \[ \int f(x) \, dx = \log |\tan x| + C, \] we will differentiate both sides with respect to \( x \). ### Step 1: Differentiate both sides We start by differentiating the left-hand side and the right-hand side: \[ \frac{d}{dx} \left( \int f(x) \, dx \right) = f(x) \] Now we differentiate the right-hand side: \[ \frac{d}{dx} \left( \log |\tan x| + C \right) = \frac{d}{dx} \left( \log |\tan x| \right) \] ### Step 2: Apply the chain rule Using the chain rule, we differentiate \( \log |\tan x| \): \[ \frac{d}{dx} \left( \log |\tan x| \right) = \frac{1}{\tan x} \cdot \frac{d}{dx} (\tan x) \] ### Step 3: Differentiate \( \tan x \) The derivative of \( \tan x \) is \( \sec^2 x \): \[ \frac{d}{dx} (\tan x) = \sec^2 x \] ### Step 4: Substitute back Substituting this back into our expression gives: \[ \frac{d}{dx} \left( \log |\tan x| \right) = \frac{1}{\tan x} \cdot \sec^2 x \] ### Step 5: Simplify Recall that \( \sec^2 x = \frac{1}{\cos^2 x} \) and \( \tan x = \frac{\sin x}{\cos x} \): \[ \frac{1}{\tan x} \cdot \sec^2 x = \frac{1}{\frac{\sin x}{\cos x}} \cdot \frac{1}{\cos^2 x} = \frac{\cos x}{\sin x} \cdot \frac{1}{\cos^2 x} = \frac{1}{\sin x \cos x} \] ### Step 6: Final expression for \( f(x) \) Thus, we have: \[ f(x) = \frac{1}{\sin x \cos x} \] This can also be expressed as: \[ f(x) = \frac{2}{\sin(2x)} \] ### Final Answer Therefore, the function \( f(x) \) is: \[ f(x) = \frac{1}{\sin x \cos x} \quad \text{or} \quad f(x) = \frac{2}{\sin(2x)} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.1|29 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int tanx dx=-log |cosx|+c

Evaluate: if int f(x)dx=g(x), then int f^(-1)(x)dx

(i) int sec x dx=|log| tanx|+c (ii) int sec dx=log |secx+tanx|+c

Evaluate: if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx

Evaluate int f (x) log _(e) x dx equal to if f(x)=x^2

If int (f(x))/(log (sin x))dx =log [log sin x]+c , then f(x) =

int(x(sin x+cos x)+cos x)/(e^(-x)+x sin x+cos x)dx=f(x)+log|g(x)|+c then f(x)+g(x)=

int(f'(x))/(f(x))dx=log f(x)+c

If int(f(x))/(log(sinx))dx=log[log sinx]+c , then f(x) is equal to