Home
Class 12
MATHS
Find: int cosec x (cosecx-cot x) dx...

Find: `int cosec x (cosecx-cot x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \csc x (\csc x - \cot x) \, dx \), we can break it down step by step. ### Step 1: Rewrite the Integral We start by distributing \( \csc x \) in the integral: \[ \int \csc x (\csc x - \cot x) \, dx = \int (\csc^2 x - \csc x \cot x) \, dx \] ### Step 2: Split the Integral Now, we can split the integral into two separate integrals: \[ \int \csc^2 x \, dx - \int \csc x \cot x \, dx \] ### Step 3: Integrate Each Part Now, we will integrate each part using standard integral formulas: 1. The integral of \( \csc^2 x \) is: \[ \int \csc^2 x \, dx = -\cot x \] 2. The integral of \( \csc x \cot x \) is: \[ \int \csc x \cot x \, dx = -\csc x \] ### Step 4: Combine the Results Now, substituting these results back into our expression, we have: \[ -\cot x - (-\csc x) = -\cot x + \csc x \] ### Step 5: Add the Constant of Integration Finally, we add the constant of integration \( C \): \[ -\cot x + \csc x + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \csc x (\csc x - \cot x) \, dx = -\cot x + \csc x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.1|29 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int cosecx(cosec x + cot x) dx = ?

int cosec^2 x dx=- cot x

int cosec x (cot x-1) e^x dx

(i) intsecx (secx +tanx) dx (ii) intcosec x(cosecx + cot x)dx

Evaluate: int csc x log(csc x-cot x)dx

int secx cosec x log(tanx)dx=

int cotx cosec^2x dx

int (cot x)/((cosec x - cot x)) dx = ?

Find following integrals (i) int(x^(5)-2)/(x^(4))dx (ii) int{x^((3)/(2))+4e^(x)+(1)/(x)}dx (iii) int cosecx{cosecx-cotx}dx (iv) int(1+sinx)/(cos^(2)x)dx