Home
Class 12
MATHS
Find int (sin(logx))/x dx...

Find `int (sin(logx))/x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin(\log x)}{x} \, dx \), we can use a substitution method. Here are the steps: ### Step 1: Substitution Let \( t = \log x \). Then, we differentiate both sides: \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt = e^t \, dt \] Since \( x = e^t \), we can rewrite the integral in terms of \( t \). ### Step 2: Change the Integral Substituting \( t \) into the integral, we have: \[ \int \frac{\sin(\log x)}{x} \, dx = \int \sin(t) \, dt \] ### Step 3: Integrate Now we can integrate \( \sin(t) \): \[ \int \sin(t) \, dt = -\cos(t) + C \] where \( C \) is the constant of integration. ### Step 4: Substitute Back Now we substitute back \( t = \log x \): \[ -\cos(t) + C = -\cos(\log x) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\sin(\log x)}{x} \, dx = -\cos(\log x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.1|29 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int(cos(logx))/(x)dx

(i) int (sin(log x))/x dx (ii) int log x (sin[1+(logx)^2])/x dx

int((logx)^n)/(x)dx=

I= int (logx)^2/x dx

Evaluate int (sin(log x))/(x)dx

int(tan(logx))/(x)dx=?

int(logx)/(x)dx=?

int(logx-1)/(x)dx