Home
Class 12
MATHS
Integration of e^x (log x+1/x)=...

Integration of ` e^x (log x+1/x)=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int e^x \left( \log x + \frac{1}{x} \right) dx\), we can use the integration by parts formula, which states: \[ \int e^x f(x) \, dx = e^x f(x) - \int e^x f'(x) \, dx \] ### Step-by-Step Solution: 1. **Identify \(f(x)\)**: We can choose \(f(x) = \log x\). Consequently, the derivative \(f'(x) = \frac{1}{x}\). 2. **Apply the Integration by Parts Formula**: We can rewrite the integral as: \[ \int e^x \left( \log x + \frac{1}{x} \right) dx = \int e^x \log x \, dx + \int e^x \frac{1}{x} \, dx \] 3. **Integrate \(\int e^x \log x \, dx\)**: Using integration by parts for \(\int e^x \log x \, dx\): - Let \(u = \log x\) and \(dv = e^x dx\). - Then, \(du = \frac{1}{x} dx\) and \(v = e^x\). Applying the integration by parts: \[ \int e^x \log x \, dx = e^x \log x - \int e^x \frac{1}{x} \, dx \] 4. **Combine the Integrals**: Now substituting back into our original integral: \[ \int e^x \left( \log x + \frac{1}{x} \right) dx = \left( e^x \log x - \int e^x \frac{1}{x} \, dx \right) + \int e^x \frac{1}{x} \, dx \] The \(\int e^x \frac{1}{x} \, dx\) terms cancel out: \[ = e^x \log x + C \] 5. **Final Result**: Thus, the integral evaluates to: \[ \int e^x \left( \log x + \frac{1}{x} \right) dx = e^x \log x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.1|29 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Integrate x log x

Integration of (1)/(1+((log)_(e)x)^(2)) with respect to (log)_(e)x is ((tan^(-1)((log)_(e)x))/(x)+C(b)tan^(-1)((log)_(e)x)+C(c)(tan^(-1)x)/(x)+C(d) none of these

Integrate the functions e^(3log x)(x^(4)+1)^(-1)

Integrate the functions x log x

Integrate the functions (e^(5log x)-e^(4log x))/(e^(2log x)-e^(2log x))

integrated e ^ (x) (log sin e ^ (x)) / (tan e ^ (x))

Integrate: (log x)/(x)

Integrate the functions x(log x)^(2)

Integrate w.r.tx,x^(n)log x

Integrate (cos(log x))/(x)