Home
Class 12
MATHS
Evaluate: int(-2)^2 (x^3+x)dx...

Evaluate: `int_(-2)^2 (x^3+x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{-2}^{2} (x^3 + x) \, dx \), we can follow these steps: ### Step 1: Identify the function The function we are integrating is \( f(x) = x^3 + x \). ### Step 2: Check if the function is odd or even To determine if the function is odd or even, we need to evaluate \( f(-x) \): \[ f(-x) = (-x)^3 + (-x) = -x^3 - x = -(x^3 + x) = -f(x) \] Since \( f(-x) = -f(x) \), the function \( f(x) \) is an odd function. ### Step 3: Use the property of definite integrals A property of definite integrals states that the integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-a}^{a} f(x) \, dx = 0 \quad \text{if } f(x) \text{ is odd} \] In our case, since \( f(x) = x^3 + x \) is odd and we are integrating from \(-2\) to \(2\), we can conclude: \[ \int_{-2}^{2} (x^3 + x) \, dx = 0 \] ### Final Answer Thus, the value of the integral is: \[ \int_{-2}^{2} (x^3 + x) \, dx = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.1|29 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(3)^(2)(x^2-3x)dx

Evaluate int _(-2) ^(2) (x ^(3) -3x) dx.

Evaluate : int_0^2 (2x^2+3x+1)dx by second Fundamental Theorem.

Evaluate: int_(-2)^(1)|x^(3)-x|dx .

Evaluate: int_(2)^(3)(1)/(x)dx

Evaluate: int_(0)^(3) x^(2) dx

Evaluate int_(0)^(5)(x^2+3x)dx

Evaluate int_-1^1 x^3 (1-x^2)dx

Evaluate int_(-1)^(1)(x^2-3x+2)dx

Evaluate: int_(1)^(3)(x^(2)+x)dx