Home
Class 12
MATHS
Evaluate: int1^(sqrt3) 1/(1+x^2) dx...

Evaluate: `int_1^(sqrt3) 1/(1+x^2) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int_1^{\sqrt{3}} \frac{1}{1+x^2} \, dx, \] we can follow these steps: ### Step 1: Identify the Integral The integral we need to evaluate is \[ \int \frac{1}{1+x^2} \, dx. \] ### Step 2: Use the Standard Integral Formula We know from calculus that the integral of \(\frac{1}{1+x^2}\) is \[ \arctan(x) + C. \] ### Step 3: Apply the Limits Now, we will evaluate the definite integral from \(x = 1\) to \(x = \sqrt{3}\): \[ \int_1^{\sqrt{3}} \frac{1}{1+x^2} \, dx = \left[ \arctan(x) \right]_1^{\sqrt{3}}. \] ### Step 4: Substitute the Limits Now we substitute the upper and lower limits into the antiderivative: \[ = \arctan(\sqrt{3}) - \arctan(1). \] ### Step 5: Evaluate the Arctangent Values We know that: - \(\arctan(\sqrt{3}) = \frac{\pi}{3}\) (since \(\tan\left(\frac{\pi}{3}\right) = \sqrt{3}\)), - \(\arctan(1) = \frac{\pi}{4}\) (since \(\tan\left(\frac{\pi}{4}\right) = 1\)). ### Step 6: Calculate the Result Now we can compute: \[ \arctan(\sqrt{3}) - \arctan(1) = \frac{\pi}{3} - \frac{\pi}{4}. \] To subtract these fractions, we need a common denominator. The least common multiple of 3 and 4 is 12: \[ \frac{\pi}{3} = \frac{4\pi}{12}, \quad \frac{\pi}{4} = \frac{3\pi}{12}. \] Thus, \[ \frac{\pi}{3} - \frac{\pi}{4} = \frac{4\pi}{12} - \frac{3\pi}{12} = \frac{1\pi}{12} = \frac{\pi}{12}. \] ### Final Answer The value of the integral is \[ \int_1^{\sqrt{3}} \frac{1}{1+x^2} \, dx = \frac{\pi}{12}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.1|29 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_1^sqrt(3) dx/(1 + x^2)

Evaluate: int1/(x^(3)sqrt(x^2-1))\ dx

Evaluate: int1/(x\ sqrt(a x-x^2))\ dx

Evaluate: int1/(sqrt(16-6x-x^2))\ dx

Evaluate: int1/(x^2sqrt(1+x^2))\ dx

(Evaluate): int_(1)^(sqrt(3))(dx)/(1+x^(2))

Evaluate: int_(1)^(sqrt(3))(dx)/(1+x^(2))

Evaluate: int_(1)^(sqrt(3))(dx)/(1+x^(2))

Evaluate: int(x+1)/sqrt (1+x^2)dx