Home
Class 12
MATHS
Evaluate: int0^3 (dx)/(9+x^2)...

Evaluate: `int_0^3 (dx)/(9+x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_0^3 \frac{dx}{9 + x^2} \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more convenient form: \[ \int_0^3 \frac{dx}{9 + x^2} = \int_0^3 \frac{dx}{3^2 + x^2} \] ### Step 2: Identify the Formula We recognize that this integral can be solved using the formula: \[ \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] where \( a = 3 \) in our case. ### Step 3: Apply the Formula Using the formula, we can evaluate the integral: \[ \int \frac{dx}{9 + x^2} = \frac{1}{3} \tan^{-1} \left( \frac{x}{3} \right) + C \] ### Step 4: Evaluate the Definite Integral Now, we need to evaluate the definite integral from 0 to 3: \[ \left[ \frac{1}{3} \tan^{-1} \left( \frac{x}{3} \right) \right]_0^3 \] ### Step 5: Calculate the Upper Limit First, we calculate the upper limit: \[ \frac{1}{3} \tan^{-1} \left( \frac{3}{3} \right) = \frac{1}{3} \tan^{-1}(1) \] Since \( \tan^{-1}(1) = \frac{\pi}{4} \), we have: \[ \frac{1}{3} \cdot \frac{\pi}{4} = \frac{\pi}{12} \] ### Step 6: Calculate the Lower Limit Now, we calculate the lower limit: \[ \frac{1}{3} \tan^{-1} \left( \frac{0}{3} \right) = \frac{1}{3} \tan^{-1}(0) = \frac{1}{3} \cdot 0 = 0 \] ### Step 7: Subtract the Limits Now, we subtract the lower limit from the upper limit: \[ \frac{\pi}{12} - 0 = \frac{\pi}{12} \] ### Final Answer Thus, the value of the integral is: \[ \int_0^3 \frac{dx}{9 + x^2} = \frac{\pi}{12} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.1|29 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(dx)/(9+4x^(2))

Evaluate : (i) int(dx)/((9x^(2)-1)) (ii) int(x)/((x^(4)-9))dx (iii) int(x^(2))/((x^(2)-9))dx

Evaluate: int_(0)^(3) x^(2) dx

int_0^3 (3x+1)/(x^2+9) dx=

Evaluate int_0^2 |1-x| dx

Evaluate: int_0^pi x/(1+cos^2x)dx

Evaluate int_0^1 x/(1+x^2) dx

Evaluate int (1-3x)/(4x^2-9)dx

Evaluate int_(0)^(5)(x^2+3x)dx