Home
Class 12
MATHS
Evaluate: int0^(pi//2) e^x (sinx-cosx) d...

Evaluate: `int_0^(pi//2) e^x (sinx-cosx) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_0^{\frac{\pi}{2}} e^x (\sin x - \cos x) \, dx \), we can break it down into two separate integrals: \[ I = \int_0^{\frac{\pi}{2}} e^x \sin x \, dx - \int_0^{\frac{\pi}{2}} e^x \cos x \, dx \] Let’s denote: \[ I_1 = \int_0^{\frac{\pi}{2}} e^x \sin x \, dx \] \[ I_2 = \int_0^{\frac{\pi}{2}} e^x \cos x \, dx \] Thus, we have: \[ I = I_1 - I_2 \] ### Step 1: Calculate \( I_1 \) To calculate \( I_1 \), we will use integration by parts. Let: - \( u = \sin x \) and \( dv = e^x \, dx \) - Then, \( du = \cos x \, dx \) and \( v = e^x \) Using integration by parts: \[ I_1 = \left[ e^x \sin x \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} e^x \cos x \, dx \] Calculating the boundary term: \[ \left[ e^x \sin x \right]_0^{\frac{\pi}{2}} = e^{\frac{\pi}{2}} \sin\left(\frac{\pi}{2}\right) - e^0 \sin(0) = e^{\frac{\pi}{2}} \cdot 1 - 0 = e^{\frac{\pi}{2}} \] Thus, \[ I_1 = e^{\frac{\pi}{2}} - I_2 \] ### Step 2: Calculate \( I_2 \) Now, we can calculate \( I_2 \) using integration by parts similarly: Let: - \( u = \cos x \) and \( dv = e^x \, dx \) - Then, \( du = -\sin x \, dx \) and \( v = e^x \) Using integration by parts: \[ I_2 = \left[ e^x \cos x \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} e^x \sin x \, dx \] Calculating the boundary term: \[ \left[ e^x \cos x \right]_0^{\frac{\pi}{2}} = e^{\frac{\pi}{2}} \cos\left(\frac{\pi}{2}\right) - e^0 \cos(0) = e^{\frac{\pi}{2}} \cdot 0 - 1 = -1 \] Thus, \[ I_2 = -1 + I_1 \] ### Step 3: Substitute \( I_2 \) in \( I_1 \) Now we have two equations: 1. \( I_1 = e^{\frac{\pi}{2}} - I_2 \) 2. \( I_2 = -1 + I_1 \) Substituting \( I_2 \) from the second equation into the first: \[ I_1 = e^{\frac{\pi}{2}} - (-1 + I_1) \] \[ I_1 = e^{\frac{\pi}{2}} + 1 - I_1 \] \[ 2I_1 = e^{\frac{\pi}{2}} + 1 \] \[ I_1 = \frac{e^{\frac{\pi}{2}} + 1}{2} \] ### Step 4: Calculate \( I_2 \) Now substituting back to find \( I_2 \): \[ I_2 = -1 + I_1 = -1 + \frac{e^{\frac{\pi}{2}} + 1}{2} = \frac{e^{\frac{\pi}{2}} - 1}{2} \] ### Step 5: Calculate \( I \) Finally, substituting \( I_1 \) and \( I_2 \) back into the expression for \( I \): \[ I = I_1 - I_2 = \left( \frac{e^{\frac{\pi}{2}} + 1}{2} \right) - \left( \frac{e^{\frac{\pi}{2}} - 1}{2} \right) \] \[ I = \frac{(e^{\frac{\pi}{2}} + 1) - (e^{\frac{\pi}{2}} - 1)}{2} = \frac{2}{2} = 1 \] Thus, the final result is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.1|29 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(pi//2) e^x (sinx-cos x) dx

Evaluate: int_0^(pi/2) sin^2x/(sinx+cosx)dx

Evaluate : int_0^(pi/2) x sinx dx

Evaluate: int_0^(pi//2)x/(sinx+cosx)dx

Evaluate int_0^(pi/2) sinx/(sinx + cosx) dx

int_(0)^(pi//2) abs(sinx-cosx) dx=

Evaluate int_0^(pi/2) sin^2x/(sinx+cosx)dx

Evaluate: int_0^(pi/2) cos^2x/(2+sinx+cosx)dx

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

Using the properties of definite integral Evaluate : int_0^(pi/2) sinx /(sinx + cosx) dx