Home
Class 12
MATHS
Evaluate: int0^pi |cos x| dx...

Evaluate: `int_0^pi |cos x| dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_0^\pi |\cos x| \, dx \), we need to analyze the behavior of the function \( |\cos x| \) over the interval from \( 0 \) to \( \pi \). ### Step 1: Identify the points where \( \cos x \) changes sign The cosine function is positive in the interval \( [0, \frac{\pi}{2}] \) and negative in the interval \( [\frac{\pi}{2}, \pi] \). Therefore, we can break the integral into two parts: \[ I = \int_0^{\frac{\pi}{2}} |\cos x| \, dx + \int_{\frac{\pi}{2}}^{\pi} |\cos x| \, dx \] ### Step 2: Simplify the absolute value In the first interval \( [0, \frac{\pi}{2}] \), \( \cos x \) is non-negative, so \( |\cos x| = \cos x \). In the second interval \( [\frac{\pi}{2}, \pi] \), \( \cos x \) is negative, so \( |\cos x| = -\cos x \). Thus, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{2}} \cos x \, dx + \int_{\frac{\pi}{2}}^{\pi} -\cos x \, dx \] ### Step 3: Evaluate the first integral Now we evaluate the first integral: \[ \int_0^{\frac{\pi}{2}} \cos x \, dx \] The antiderivative of \( \cos x \) is \( \sin x \). Therefore, \[ \int_0^{\frac{\pi}{2}} \cos x \, dx = \left[ \sin x \right]_0^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin(0) = 1 - 0 = 1 \] ### Step 4: Evaluate the second integral Next, we evaluate the second integral: \[ \int_{\frac{\pi}{2}}^{\pi} -\cos x \, dx \] This can be rewritten as: \[ -\int_{\frac{\pi}{2}}^{\pi} \cos x \, dx \] Again, using the antiderivative of \( \cos x \): \[ -\int_{\frac{\pi}{2}}^{\pi} \cos x \, dx = -\left[ \sin x \right]_{\frac{\pi}{2}}^{\pi} = -\left( \sin(\pi) - \sin\left(\frac{\pi}{2}\right) \right) = -\left( 0 - 1 \right) = 1 \] ### Step 5: Combine the results Now we can combine the results of both integrals: \[ I = 1 + 1 = 2 \] Thus, the value of the integral is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.1|29 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(4pi)|cos x| dx .

evaluate int_(0)^(pi/2)|cos x|dx

Evaluate int_0^(pi/2) cos^2x dx

Evaluate: int_0^(2pi)cos^5x\ dx

Evaluate: int_0^pi cos 2x log sin x dx

int_(0)^( pi)|cos x|dx

int_(0)^( pi)|cos x|dx

Evaluate: int_0^pi (cos x)/(1+sinx)^2 dx

The value of int_(0)^(pi) |cos x|dx , is