Home
Class 12
MATHS
Find the following integrals : int (2x...

Find the following integrals :
`int (2x^2+e^x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (2x^2 + e^x) \, dx \), we can break it down into two separate integrals: \[ \int (2x^2 + e^x) \, dx = \int 2x^2 \, dx + \int e^x \, dx \] ### Step 1: Integrate \( 2x^2 \) Using the power rule of integration, which states that \( \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \), we can integrate \( 2x^2 \): \[ \int 2x^2 \, dx = 2 \cdot \frac{x^{2+1}}{2+1} = 2 \cdot \frac{x^3}{3} = \frac{2}{3} x^3 \] ### Step 2: Integrate \( e^x \) The integral of \( e^x \) is straightforward: \[ \int e^x \, dx = e^x \] ### Step 3: Combine the results Now, we can combine the results of the two integrals: \[ \int (2x^2 + e^x) \, dx = \frac{2}{3} x^3 + e^x + C \] where \( C \) is the constant of integration. ### Final Answer: Thus, the final result of the integral is: \[ \int (2x^2 + e^x) \, dx = \frac{2}{3} x^3 + e^x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.6|22 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTONS|25 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Find the following integrals : (i) int(dx)/(x^(2)-6x+13)int(dx)/(3x^(2)+13x-10)int(dx)/(sqrt(5x^(2)-2x))

Evaluate the following integral: int_(-2)^2x e^(|x|)dx

Evaluate the following Integrals. int x^(2) a^(x) dx

Find the following integrals: ( i ) int(dx)/(x^(2)-16)int(dx)/(sqrt(2x-x^(2)))

Evaluate the following integrals : (a) int (dx)/( x^(2) - 6x + 13),

Evaluate the following integrals: int(x^(e)+e^(x)+e^(e))dx

Evaluate the following integrals: int sqrt(2ax-x^2dx

Evaluate the following integrals: (i) int_2^3 x^2 dx (ii) int_1^3 x/((x+1)(x+2)) dx

If a>0 and a!=1 evaluate the following integrals: int e^(x)a^(x)dx (ii) int2^((log)_(e)x)dx

Evaluate the following integrals: int (e^(x))/(a^(x))dx