Home
Class 12
MATHS
Find the following integrals : int (sq...

Find the following integrals :
`int (sqrtx-1/sqrtx)^2 dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 \, dx \), we can follow these steps: ### Step 1: Expand the integrand First, we expand the expression inside the integral: \[ \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 = \left( \sqrt{x} \right)^2 - 2 \left( \sqrt{x} \right) \left( \frac{1}{\sqrt{x}} \right) + \left( \frac{1}{\sqrt{x}} \right)^2 \] This simplifies to: \[ x - 2 + \frac{1}{x} \] ### Step 2: Rewrite the integral Now we rewrite the integral with the expanded expression: \[ \int \left( x - 2 + \frac{1}{x} \right) \, dx \] ### Step 3: Integrate term by term Next, we integrate each term separately: 1. The integral of \( x \) is \( \frac{x^2}{2} \). 2. The integral of \( -2 \) is \( -2x \). 3. The integral of \( \frac{1}{x} \) is \( \ln |x| \). Putting it all together, we have: \[ \int \left( x - 2 + \frac{1}{x} \right) \, dx = \frac{x^2}{2} - 2x + \ln |x| + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 \, dx = \frac{x^2}{2} - 2x + \ln |x| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.6|22 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTONS|25 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Find the following integrals : int (1-x) sqrtx dx

int (cossqrtx)/(sqrtx)dx

Evaluate the following integrals: int frac{sqrtx}{sqrt(a^3-x^3)}dx

(8) int(1/(sqrtx)-sqrtx)dx

int(sec sqrtx)/(sqrtx)dx=

1/sqrtx (sqrtx+1/sqrtx)^2

Evaluate : int ( sqrtx + 1/sqrtx ) dx

int(sqrtx)/(1+xsqrtx)dx-

int ((1+sqrtx)^2)/sqrtx dx=

int1/(sqrtx(1-sqrtx)dx=