Home
Class 12
MATHS
int1^4 (x^2-x)dx...

`int_1^4 (x^2-x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int_1^4 (x^2 - x) \, dx\), we will follow these steps: ### Step 1: Set up the integral We need to evaluate the definite integral of the function \(x^2 - x\) from 1 to 4. \[ \int_1^4 (x^2 - x) \, dx \] ### Step 2: Break down the integral We can separate the integral into two parts: \[ \int_1^4 x^2 \, dx - \int_1^4 x \, dx \] ### Step 3: Integrate each part Now we will integrate each part separately. 1. **Integrate \(x^2\)**: \[ \int x^2 \, dx = \frac{x^3}{3} \] 2. **Integrate \(x\)**: \[ \int x \, dx = \frac{x^2}{2} \] ### Step 4: Evaluate the definite integrals Now we will evaluate the definite integrals from 1 to 4. 1. **For \(\int_1^4 x^2 \, dx\)**: \[ \left[ \frac{x^3}{3} \right]_1^4 = \frac{4^3}{3} - \frac{1^3}{3} = \frac{64}{3} - \frac{1}{3} = \frac{63}{3} = 21 \] 2. **For \(\int_1^4 x \, dx\)**: \[ \left[ \frac{x^2}{2} \right]_1^4 = \frac{4^2}{2} - \frac{1^2}{2} = \frac{16}{2} - \frac{1}{2} = 8 - \frac{1}{2} = \frac{16}{2} - \frac{1}{2} = \frac{15}{2} \] ### Step 5: Combine the results Now we will combine the results from both integrals: \[ \int_1^4 (x^2 - x) \, dx = 21 - \frac{15}{2} \] To subtract these, we can convert 21 into a fraction: \[ 21 = \frac{42}{2} \] Now we can perform the subtraction: \[ \frac{42}{2} - \frac{15}{2} = \frac{42 - 15}{2} = \frac{27}{2} \] ### Final Answer Thus, the value of the integral \(\int_1^4 (x^2 - x) \, dx\) is: \[ \frac{27}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 7|43 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise QUESTION FROM NCERT EXAMPLAR|6 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.7|9 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals as limit of sum: int_1^4(3x^2+2x)dx

4. int1/(2x^2-x-1)dx

int_(1)^(4)(3x^(2)+2x)dx

Evaluate int 1/(x^2+4x+8) dx

Evaluate I=int 1/(3x^2+4x+6)dx

Evaluate: int(1)/(sin^(4)x cos^(2)x)dx

"int_(-1)^(4)(x^(5)+2x^(2)+x)dx

Evaluate: (i) int1/(4x^2+4x+5)\ dx

Evaluate: (i) int1/(4x^2+12 x+5)\ dx (ii) int1/(x^2-10 x+34)\ dx

int(1)/(x^(2)-4x+8)dx