Home
Class 12
MATHS
int x^8/(1+x^3)^(1//3)dx...

`int x^8/(1+x^3)^(1//3)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^8}{(1+x^3)^{1/3}} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( u = 1 + x^3 \). Then, we differentiate to find \( du \): \[ du = 3x^2 \, dx \implies dx = \frac{du}{3x^2} \] ### Step 2: Express \( x^2 \) in terms of \( u \) From the substitution \( u = 1 + x^3 \), we can express \( x^3 \) as: \[ x^3 = u - 1 \implies x = (u - 1)^{1/3} \] Now, we can find \( x^2 \): \[ x^2 = ((u - 1)^{1/3})^2 = (u - 1)^{2/3} \] ### Step 3: Substitute \( x^8 \) and \( dx \) in the integral Now, we need to express \( x^8 \) in terms of \( u \): \[ x^8 = ((u - 1)^{1/3})^8 = (u - 1)^{8/3} \] Substituting these into the integral gives: \[ \int \frac{(u - 1)^{8/3}}{u^{1/3}} \cdot \frac{du}{3(u - 1)^{2/3}} = \int \frac{(u - 1)^{8/3}}{u^{1/3} \cdot 3(u - 1)^{2/3}} \, du \] This simplifies to: \[ \int \frac{(u - 1)^{6/3}}{3u^{1/3}} \, du = \frac{1}{3} \int \frac{(u - 1)^2}{u^{1/3}} \, du \] ### Step 4: Expand the integrand Now, we expand \( (u - 1)^2 \): \[ (u - 1)^2 = u^2 - 2u + 1 \] Thus, the integral becomes: \[ \frac{1}{3} \int \left( \frac{u^2}{u^{1/3}} - \frac{2u}{u^{1/3}} + \frac{1}{u^{1/3}} \right) \, du = \frac{1}{3} \int \left( u^{5/3} - 2u^{2/3} + u^{-1/3} \right) \, du \] ### Step 5: Integrate term by term Now we can integrate each term: \[ \int u^{5/3} \, du = \frac{u^{8/3}}{8/3} = \frac{3}{8} u^{8/3} \] \[ \int -2u^{2/3} \, du = -2 \cdot \frac{u^{5/3}}{5/3} = -\frac{6}{5} u^{5/3} \] \[ \int u^{-1/3} \, du = \frac{u^{2/3}}{2/3} = \frac{3}{2} u^{2/3} \] Combining these results, we have: \[ \frac{1}{3} \left( \frac{3}{8} u^{8/3} - \frac{6}{5} u^{5/3} + \frac{3}{2} u^{2/3} \right) + C \] ### Step 6: Substitute back for \( u \) Now substitute back \( u = 1 + x^3 \): \[ = \frac{1}{8} (1 + x^3)^{8/3} - \frac{2}{5} (1 + x^3)^{5/3} + \frac{1}{2} (1 + x^3)^{2/3} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{x^8}{(1+x^3)^{1/3}} \, dx = \frac{1}{8} (1 + x^3)^{8/3} - \frac{2}{5} (1 + x^3)^{5/3} + \frac{1}{2} (1 + x^3)^{2/3} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) int(3x^(2))/((1+x^(6)))dx (ii) int(x^(3))/((x^(2)+1)^(3))dx (iii) (x^(8))/((1-x^(3))^(1//3))dx

Evaluate int(dx)/((1-x^(3))^(1//3))dx .

int x^(1/3)(1+x^(4/3))dx"

int x^(-1/3)(1+x^(2/3))dx

int(x^(3)-1)^(1//3)x^(5)dx is equal to

int(dx)/(1+x^(3))

Evaluate: int(x^3-1)^(1/3)x^5dx

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int_-a^a(1+x^3)^(-1)dx= (A) 0 (B) 2int_0^a(1-x^6)^(-1)dx (C) 2int_0^a(1+x^3)^(-1)dx (D) 2int_0^a[1+(a-x^3)]^(-1)dx