Home
Class 12
MATHS
int(0)^(pi//2)(sqrt(tanx)+sqrt(cotx))dx...

`int_(0)^(pi//2)(sqrt(tanx)+sqrt(cotx))dx`

Text Solution

Verified by Experts

The correct Answer is:
(i) `pi/(2sqrt2)` (ii) `sqrt2pi`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4)(sqrt(tanx)+sqrt(cotx))dx equals

Evaluate the following integral: int_0^(pi//4)(sqrt(t a n x)+sqrt(cotx))dx

If int_(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx=(pi)/(sqrtm), then the value of m is equal to

Evaluate the following : int_(0)^(pi//2)(sqrt(tanx))/(sqrt(tanx)+sqrt(cotx))dx

The value of the integral int_(0)^(pi//2)(sqrt(cotx))/(sqrt(cotx)+sqrt(tanx))dx is

int_(0)^(pi//2)(sqrt(cotx))/((1+sqrt(cotx)))dx=?

Prove that: int_(0)^((pi)/(4))(sqrt(tan x)+sqrt(cot x)dx=sqrt(2)*(pi)/(2)

Evaluate the following: int_0^(pi/2) sqrt(tanx)/(1+sqrt(tanx))dx

Prove that : int_(0)^(pi//2) (sqrt(tanx))/(sqrt(tanx +sqrt(cotx)))dx=(pi)/(4)