Home
Class 12
MATHS
int cos (2 cot^-1 sqrt((1-x)/(1+x)))dx...

`int cos (2 cot^-1 sqrt((1-x)/(1+x)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos \left( 2 \cot^{-1} \sqrt{\frac{1-x}{1+x}} \right) dx \), we will follow these steps: ### Step 1: Simplify the Argument We start with the expression inside the cosine function: \[ \cot^{-1} \sqrt{\frac{1-x}{1+x}} \] To simplify this, we can use the substitution \( x = \cos \theta \). This gives us: \[ 1 - x = 1 - \cos \theta = 2 \sin^2 \frac{\theta}{2} \] \[ 1 + x = 1 + \cos \theta = 2 \cos^2 \frac{\theta}{2} \] Thus, we can rewrite the argument: \[ \sqrt{\frac{1-x}{1+x}} = \sqrt{\frac{2 \sin^2 \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}} = \sqrt{\tan^2 \frac{\theta}{2}} = \tan \frac{\theta}{2} \] ### Step 2: Rewrite the Integral Now, substituting back into the integral, we have: \[ \int \cos \left( 2 \cot^{-1} \tan \frac{\theta}{2} \right) dx \] Using the identity \( \cot^{-1} \tan \frac{\theta}{2} = \frac{\pi}{2} - \frac{\theta}{2} \), we can rewrite the cosine term: \[ \cos \left( 2 \cot^{-1} \tan \frac{\theta}{2} \right) = \cos \left( \pi - \theta \right) = -\cos \theta \] ### Step 3: Substitute Back to x Since we have \( \theta = \cos^{-1}(x) \), we can express \( -\cos \theta \) as: \[ -\cos \theta = -x \] ### Step 4: Integrate Now we can integrate: \[ \int -x \, dx = -\frac{x^2}{2} + C \] ### Final Answer Thus, the final result of the integral is: \[ -\frac{x^2}{2} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

intcos(2cot^(-1)sqrt((1-x)/(1+x)))dx=

If I=int_(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

int cos[2cot^(-1)sqrt((a-x)/(a+x))]dx

int cos^(-1)sqrt((1-x)/(2))dx

Evaluate: int cos{2cot^(-1)sqrt((1+x)/(1-x))}

int_(0)^(1)cos(2cot^(-1)(sqrt((1-x)/(1+x)))

int cos^(-1)sqrt((x)/(a+x))dx

Evaluate : int tan^(-1){sqrt((1-cos2x)/(1+cos2x))}dx .