Home
Class 12
MATHS
int (sin^-1sqrtx-cos^-1 sqrtx)/(sin^-1 s...

`int (sin^-1sqrtx-cos^-1 sqrtx)/(sin^-1 sqrtx+ cos^-1 sqrtx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin^{-1}(\sqrt{x}) - \cos^{-1}(\sqrt{x})}{\sin^{-1}(\sqrt{x}) + \cos^{-1}(\sqrt{x})} \, dx, \] we will follow these steps: ### Step 1: Use the identity for inverse trigonometric functions We know that \[ \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2}. \] Thus, we can rewrite the integral as: \[ I = \int \frac{\sin^{-1}(\sqrt{x}) - \left(\frac{\pi}{2} - \sin^{-1}(\sqrt{x})\right)}{\sin^{-1}(\sqrt{x}) + \left(\frac{\pi}{2} - \sin^{-1}(\sqrt{x})\right)} \, dx. \] ### Step 2: Simplify the expression Substituting the identity into the integral gives: \[ I = \int \frac{2\sin^{-1}(\sqrt{x}) - \frac{\pi}{2}}{\frac{\pi}{2}} \, dx. \] This simplifies to: \[ I = \int \frac{4\sin^{-1}(\sqrt{x}) - \pi}{\pi} \, dx. \] ### Step 3: Split the integral We can split the integral into two parts: \[ I = \frac{4}{\pi} \int \sin^{-1}(\sqrt{x}) \, dx - \int \, dx. \] ### Step 4: Substitute \( \sqrt{x} = t \) Let \( t = \sqrt{x} \), then \( x = t^2 \) and \( dx = 2t \, dt \). The integral becomes: \[ I = \frac{4}{\pi} \int \sin^{-1}(t) \cdot 2t \, dt - \int 2t^2 \, dt. \] ### Step 5: Evaluate the first integral using integration by parts Using integration by parts for \( \int t \sin^{-1}(t) \, dt \): Let \( u = \sin^{-1}(t) \) and \( dv = t \, dt \). Then \( du = \frac{1}{\sqrt{1 - t^2}} \, dt \) and \( v = \frac{t^2}{2} \). Thus, we have: \[ \int t \sin^{-1}(t) \, dt = \frac{t^2}{2} \sin^{-1}(t) - \int \frac{t^2}{2\sqrt{1 - t^2}} \, dt. \] ### Step 6: Evaluate the second integral The second integral can be evaluated as: \[ \int t^2 \, dt = \frac{t^3}{3}. \] ### Step 7: Combine results Combining the results from the integration by parts and the second integral will yield the final expression for \( I \). ### Step 8: Substitute back \( t = \sqrt{x} \) Finally, substitute back \( t = \sqrt{x} \) to express the integral in terms of \( x \). ### Final Result After simplification, we will arrive at the final expression for the integral \( I \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

(sin^(-1)sqrtx-cos^(-1)sqrtx)/(sin^(-1)sqrt(x)+cos^(-1)sqrtx)

sin ^3sqrtx

y = sqrtx + 1/sqrtx

int1/(sqrtx(1-sqrtx)dx=

1/sqrtx (sqrtx+1/sqrtx)^2

(i) int tan^-1 sqrtx dx (ii) int sin^-1 sqrtx dx

sqrtx + 1/sqrtx

Find (dy)/(dx)" if y=sin"^(-1) ((sqrtx-1)/(sqrtx+1))+sec^(-1) ((sqrtx+1)/(sqrtx-1))