Home
Class 12
MATHS
int2^5 (x^2+x)dx...

`int_2^5 (x^2+x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_2^5 (x^2 + x) \, dx \), we can break it down into two separate integrals: \[ \int_2^5 (x^2 + x) \, dx = \int_2^5 x^2 \, dx + \int_2^5 x \, dx \] ### Step 1: Integrate \( x^2 \) The integral of \( x^2 \) is calculated as follows: \[ \int x^2 \, dx = \frac{x^3}{3} + C \] Now, we will evaluate this from 2 to 5: \[ \int_2^5 x^2 \, dx = \left[ \frac{x^3}{3} \right]_2^5 = \frac{5^3}{3} - \frac{2^3}{3} \] Calculating the values: \[ = \frac{125}{3} - \frac{8}{3} = \frac{125 - 8}{3} = \frac{117}{3} \] ### Step 2: Integrate \( x \) Next, we integrate \( x \): \[ \int x \, dx = \frac{x^2}{2} + C \] Now, we will evaluate this from 2 to 5: \[ \int_2^5 x \, dx = \left[ \frac{x^2}{2} \right]_2^5 = \frac{5^2}{2} - \frac{2^2}{2} \] Calculating the values: \[ = \frac{25}{2} - \frac{4}{2} = \frac{25 - 4}{2} = \frac{21}{2} \] ### Step 3: Combine the Results Now we will combine the results of both integrals: \[ \int_2^5 (x^2 + x) \, dx = \frac{117}{3} + \frac{21}{2} \] To add these fractions, we need a common denominator. The least common multiple of 3 and 2 is 6. Rewriting the fractions: \[ \frac{117}{3} = \frac{117 \times 2}{3 \times 2} = \frac{234}{6} \] \[ \frac{21}{2} = \frac{21 \times 3}{2 \times 3} = \frac{63}{6} \] Now, adding them together: \[ \frac{234}{6} + \frac{63}{6} = \frac{234 + 63}{6} = \frac{297}{6} \] ### Step 4: Simplify the Result Finally, we can simplify \( \frac{297}{6} \): \[ \frac{297}{6} = 49.5 \] Thus, the final answer is: \[ \int_2^5 (x^2 + x) \, dx = 49.5 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_2^5e^(3x)dx=?

Evaluate : int ( x^2 - 5x ) dx

int(x^(2)-5x+7)dx

int(x^(2)-5x+7)dx

The value of int_(3)^(5) (x^(2))/(x^(2)-4) dx, is

int_(1)^(5) (x^(2) -2x) dx

(i) int (x dx)/(x^2+3x+2) (ii) int x/(x^2+5x+6) dx

int(5x^2+2x+3)dx

int(5x^2+2x+1)dx