Home
Class 12
MATHS
int(0)^(2pi)|cosx|dx=4...

`int_(0)^(2pi)|cosx|dx=4`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)|cosx|dx=?

Evaluate int_(0)^(2pi)|cosx|dx

int_(0)^(100pi)|cosx|dx= …………………………..

8) int_0^(2pi)cosx dx

Find the value of int_0^(2pi) |cosx|dx

What is geometrical significance of (i) int_(0)^(pi) |cosx| dx , (ii) int_(0)^((3pi)/(2)) cosx dx

If l_(1)=int_(0)^(npi)f(|cosx|)dx and l_(2)=int_(0)^(5pi)f(|cosx|)dx , then

int_(0)^(pi)|1+2cosx| dx is equal to :

The value of int_(0)^(2pi)|cosx-sinx|dx is equal to

int_(0)^(2pi)(sinx+cosx)dx=