Home
Class 12
MATHS
int(0)^(pi//2)log(tanx+cotx)dx=pi(log2)...

`int_(0)^(pi//2)log(tanx+cotx)dx=pi(log2)`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi//2)log(tanx)dx

int_(0)^(pi//2) log (tan x ) dx=

int_(0)^(pi//2) log (cotx ) dx=

int_(0)^((pi)/(2))log(tan x)*dx

int_(0)^( pi/2)log[tan x*cot x]dx

int_(0)^(pi//2)x cot x dx=(pi)/(2)(log2)

Prove that: int_(0)^( pi/2)log|tan x+cot x|dx=pi log_(e)2

int_(0)^((pi)/(2))log(cos x)dx=

int_(0)^(pi//2)log (sec x) dx=

int_(0)^((pi)/(2))log(sin x)dx