Home
Class 12
MATHS
Evaluate: int0^1 1/(sqrt(1+x)-sqrtx) dx...

Evaluate: `int_0^1 1/(sqrt(1+x)-sqrtx) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_0^1 \frac{1}{\sqrt{1+x} - \sqrt{x}} \, dx \), we will follow a systematic approach. ### Step 1: Rationalize the Denominator We start by rationalizing the denominator. We multiply and divide by the conjugate of the denominator: \[ I = \int_0^1 \frac{\sqrt{1+x} + \sqrt{x}}{(\sqrt{1+x} - \sqrt{x})(\sqrt{1+x} + \sqrt{x})} \, dx \] This simplifies to: \[ I = \int_0^1 \frac{\sqrt{1+x} + \sqrt{x}}{1+x - x} \, dx = \int_0^1 \frac{\sqrt{1+x} + \sqrt{x}}{1} \, dx = \int_0^1 (\sqrt{1+x} + \sqrt{x}) \, dx \] ### Step 2: Split the Integral Now we can split the integral into two parts: \[ I = \int_0^1 \sqrt{1+x} \, dx + \int_0^1 \sqrt{x} \, dx \] ### Step 3: Evaluate Each Integral 1. **Evaluate \( \int_0^1 \sqrt{x} \, dx \)**: \[ \int_0^1 \sqrt{x} \, dx = \int_0^1 x^{1/2} \, dx = \left[ \frac{x^{3/2}}{3/2} \right]_0^1 = \left[ \frac{2}{3} x^{3/2} \right]_0^1 = \frac{2}{3} \] 2. **Evaluate \( \int_0^1 \sqrt{1+x} \, dx \)**: To evaluate this integral, we can use the substitution \( u = 1+x \), hence \( du = dx \) and the limits change from \( x=0 \) to \( u=1 \) and \( x=1 \) to \( u=2 \): \[ \int_0^1 \sqrt{1+x} \, dx = \int_1^2 \sqrt{u} \, du = \left[ \frac{u^{3/2}}{3/2} \right]_1^2 = \left[ \frac{2}{3} u^{3/2} \right]_1^2 = \frac{2}{3} \left( 2^{3/2} - 1^{3/2} \right) = \frac{2}{3} \left( 2\sqrt{2} - 1 \right) \] ### Step 4: Combine the Results Now we combine the results of the two integrals: \[ I = \frac{2}{3} \left( 2\sqrt{2} - 1 \right) + \frac{2}{3} \] This simplifies to: \[ I = \frac{2}{3} (2\sqrt{2}) = \frac{4\sqrt{2}}{3} \] ### Final Result Thus, the value of the integral is: \[ \boxed{\frac{4\sqrt{2}}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_0^1 (dx)/(sqrt(1+x)-sqrtx)

int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx

int_0^1 x/sqrt(1+x)dx

int1/(sqrtx(1-sqrtx)dx=

Evaluate : int(1)/(sqrt(x+1)+sqrt(x+2))dx

Evaluate: int(1)/(sqrt(x)+sqrt(x+1))dx

int_0^1 x/sqrt(1+x^2)dx

int_0^1 x/(1+sqrt(x))dx

int_0^1 x/sqrt(1-x^2)dx

int_0^1 (x)/(sqrt(1-x))dx=