Home
Class 12
MATHS
If vec(a)=4hat(i)-hat(j)+hat(k) and vec(...

If `vec(a)=4hat(i)-hat(j)+hat(k)` and `vec(b)=2hat(i)-2hat(j)+hat(k)`, then find a unit vector parallel to the vector `vec(a)+vec(b)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector parallel to the vector \(\vec{a} + \vec{b}\), we will follow these steps: ### Step 1: Find \(\vec{a} + \vec{b}\) Given: \[ \vec{a} = 4\hat{i} - \hat{j} + \hat{k} \] \[ \vec{b} = 2\hat{i} - 2\hat{j} + \hat{k} \] Now, we add the vectors \(\vec{a}\) and \(\vec{b}\): \[ \vec{a} + \vec{b} = (4\hat{i} + 2\hat{i}) + (-\hat{j} - 2\hat{j}) + (\hat{k} + \hat{k}) \] \[ = (4 + 2)\hat{i} + (-1 - 2)\hat{j} + (1 + 1)\hat{k} \] \[ = 6\hat{i} - 3\hat{j} + 2\hat{k} \] ### Step 2: Calculate the magnitude of \(\vec{a} + \vec{b}\) The magnitude of a vector \(\vec{v} = x\hat{i} + y\hat{j} + z\hat{k}\) is given by: \[ |\vec{v}| = \sqrt{x^2 + y^2 + z^2} \] For \(\vec{a} + \vec{b} = 6\hat{i} - 3\hat{j} + 2\hat{k}\): \[ |\vec{a} + \vec{b}| = \sqrt{(6)^2 + (-3)^2 + (2)^2} \] \[ = \sqrt{36 + 9 + 4} \] \[ = \sqrt{49} \] \[ = 7 \] ### Step 3: Find the unit vector parallel to \(\vec{a} + \vec{b}\) A unit vector in the direction of a vector \(\vec{v}\) is given by: \[ \hat{u} = \frac{\vec{v}}{|\vec{v}|} \] Thus, the unit vector parallel to \(\vec{a} + \vec{b}\) is: \[ \hat{u} = \frac{\vec{a} + \vec{b}}{|\vec{a} + \vec{b}|} \] \[ = \frac{6\hat{i} - 3\hat{j} + 2\hat{k}}{7} \] \[ = \frac{6}{7}\hat{i} - \frac{3}{7}\hat{j} + \frac{2}{7}\hat{k} \] ### Final Answer The unit vector parallel to \(\vec{a} + \vec{b}\) is: \[ \hat{u} = \frac{6}{7}\hat{i} - \frac{3}{7}\hat{j} + \frac{2}{7}\hat{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar (Example)|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (a) Short Answer Type Questions|21 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

If vec a=hat i+2hat j-3hat k and vec b=2hat i+4hat j+9hat k find a unit vector parallel to vec a+vec b

If vec a=3hat i-2hat j+hat k and vec b=-hat i+hat j+hat k then the unit vector parallel to vec a+vec b, is

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

MODERN PUBLICATION-VECTOR ALGEBRA -Frequently Asked Questions (Example)
  1. Find the position vector of a point which divides the join of points w...

    Text Solution

    |

  2. The two vectors hat j+ hat k and 3 hat i- hat j+4 hat k represent the...

    Text Solution

    |

  3. If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k), the...

    Text Solution

    |

  4. Find the vector joining the points P(2, 3, 0) and Q(-1,-2,-4) directed...

    Text Solution

    |

  5. Write the direction ratios of the vector -> a= hat i+ hat j-2 hat k a...

    Text Solution

    |

  6. Find the unit vector in the direction of the sum of the vectors : v...

    Text Solution

    |

  7. Find a vector of magnitude 5 units, and parallel to the resultant of ...

    Text Solution

    |

  8. Prove that if vec(u)=u(1)hat(1)hat(i)+u(2)hat(j) and vec(v)=v(1)hat(i)...

    Text Solution

    |

  9. Find the value of ' p ' for which the vectors 3 hat i+2 hat j+9 hat k\...

    Text Solution

    |

  10. Show that the points, A, B and C having position vectors (2hat(i)-hat(...

    Text Solution

    |

  11. The position vectors of A, B, C are 2hat(i)+hat(j)-hat(k), 3hat(i)-2ha...

    Text Solution

    |

  12. Prove that the four points having position vectors are coplanar: 2 hat...

    Text Solution

    |

  13. Show that the found points A ,B ,C ,D with position vectors vec a , v...

    Text Solution

    |

  14. Find the magnitude of each of the two vectors veca and vec b having th...

    Text Solution

    |

  15. If vec(a) and vec(b) are perpendicular vectors such that |vec(a)+vec(b...

    Text Solution

    |

  16. Find the projection of the vector hat i+3 hat j+7 hat k on the vector...

    Text Solution

    |

  17. Find lambda, when the projection of vec a=lambda hat i+ hat j+4 hat k...

    Text Solution

    |

  18. If vec a and vec b are two unit vectors such that vec a+ vec b is a...

    Text Solution

    |

  19. Find | vec x| , if for a unit vector vec a ,\ ( vec x-\ vec a)dot( v...

    Text Solution

    |

  20. If ā,b,c are three vectors such that |veca |= 5, |vecb| = 12 and | ...

    Text Solution

    |