Home
Class 12
MATHS
If 'theta' is the angle between the vect...

If `'theta'` is the angle between the vectors : `vec(a)=hat(i)+2hat(j)+3hat(k)` and `vec(b)=3hat(i)-2hat(j)+hat(k)`, find sin `theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\sin \theta\) where \(\theta\) is the angle between the vectors \(\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}\) and \(\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}\), we can follow these steps: ### Step 1: Find the modulus of vector \(\vec{a}\) The modulus of a vector \(\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}\) is given by: \[ |\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2} \] For \(\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}\): - \(a_1 = 1\), \(a_2 = 2\), \(a_3 = 3\) Calculating the modulus: \[ |\vec{a}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14} \] ### Step 2: Find the modulus of vector \(\vec{b}\) For \(\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}\): - \(b_1 = 3\), \(b_2 = -2\), \(b_3 = 1\) Calculating the modulus: \[ |\vec{b}| = \sqrt{3^2 + (-2)^2 + 1^2} = \sqrt{9 + 4 + 1} = \sqrt{14} \] ### Step 3: Calculate the cross product \(\vec{a} \times \vec{b}\) Using the determinant method: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 3 & -2 & 1 \end{vmatrix} \] Calculating the determinant: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 2 & 3 \\ -2 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ 3 & -2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 2 & 3 \\ -2 & 1 \end{vmatrix} = (2)(1) - (3)(-2) = 2 + 6 = 8\) 2. \(\begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} = (1)(1) - (3)(3) = 1 - 9 = -8\) 3. \(\begin{vmatrix} 1 & 2 \\ 3 & -2 \end{vmatrix} = (1)(-2) - (2)(3) = -2 - 6 = -8\) Putting it all together: \[ \vec{a} \times \vec{b} = 8\hat{i} + 8\hat{j} - 8\hat{k} = 8\hat{i} + 8\hat{j} - 8\hat{k} \] ### Step 4: Find the modulus of \(\vec{a} \times \vec{b}\) \[ |\vec{a} \times \vec{b}| = \sqrt{(8)^2 + (8)^2 + (-8)^2} = \sqrt{64 + 64 + 64} = \sqrt{192} = 8\sqrt{3} \] ### Step 5: Calculate \(\sin \theta\) Using the formula: \[ \sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}| |\vec{b}|} \] Substituting the values: \[ \sin \theta = \frac{8\sqrt{3}}{\sqrt{14} \cdot \sqrt{14}} = \frac{8\sqrt{3}}{14} = \frac{4\sqrt{3}}{7} \] ### Final Answer \[ \sin \theta = \frac{4\sqrt{3}}{7} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar (Example)|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (a) Short Answer Type Questions|21 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

Find the angle between the vectors : vec(a)=2hat(i)-hat(j)+2hat(k) " and " vec(b)=6hat(i)+2hat(j)+3hat(k) .

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

Find the sine of the angle between the vectors vec(a) =(2 hat(i) - hat(j) + 3 hat(k)) and vec(b) = (hat(i) + 3 hat(j) + 2 hat(k)).

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

Find angle between the vectors vec a=hat i+hat j-hat k and vec b=hat i-hat j+hat k

MODERN PUBLICATION-VECTOR ALGEBRA -Frequently Asked Questions (Example)
  1. If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec...

    Text Solution

    |

  2. Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3h...

    Text Solution

    |

  3. If vec a ,\ vec b ,\ vec c are three mutually perpendicular vectors...

    Text Solution

    |

  4. Find a vector vec a of magnitude 5sqrt(2) making an angle pi/4 with x-...

    Text Solution

    |

  5. Let vec(A)=4hat(i)+5hat(j)-hat(k), vec(b)=hat(i)-4hat(j)+5hat(k) and v...

    Text Solution

    |

  6. If with reference to a right handed system of mutually perpendicula...

    Text Solution

    |

  7. If vectors vec a\ a n d\ vec b\ are such that | vec a|=3,\ | vec b|...

    Text Solution

    |

  8. If 'theta' is the angle between the vectors : vec(a)=hat(i)+2hat(j)+3h...

    Text Solution

    |

  9. Find 'lambda' and 'mu' if : (hat(i)+3hat(j)+9hat(k))xx(3hat(i)-lam...

    Text Solution

    |

  10. If vec a= hat i+ hat j+ hat kand vec b= hat j- hat k ,find a vect...

    Text Solution

    |

  11. If vec(r )=x hat(i)+y hat(j)+x hat(k), find : (vec(r )xx hat(i)).(vec...

    Text Solution

    |

  12. If vec(a) xx vec(b)= vec(c) xx vec(d) and vec(a) xx vec(c) =vec(b) xx ...

    Text Solution

    |

  13. Find a vector of magnitude 7 units, which is perpendicular to two vect...

    Text Solution

    |

  14. Find the area of the parallelogram whose adjacent sides are determined...

    Text Solution

    |

  15. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  16. Find the area of a triangle having the pointsA(1, 1, 1), B(1, 2, 3)and...

    Text Solution

    |

  17. If vec(a)=2hat(i)-3hat(j)+4hat(k) and vec(b)=5hat(i)+hat(j)-hat(k) r...

    Text Solution

    |

  18. If vec(a), vec(b), vec(c ) are the position vectors of the vecrtices A...

    Text Solution

    |

  19. Largange's Identify. Prove that (vec(a)xx vec(b))^(2)=|vec(a)|^(2)|vec...

    Text Solution

    |

  20. Show that vec(a)xx vec(b)=vec(a)xx vec(c ) does not imply vec(b)=vec(c...

    Text Solution

    |