Home
Class 12
MATHS
Find 'lambda' and 'mu' if : (hat(i)+...

Find `'lambda'` and `'mu'` if :
`(hat(i)+3hat(j)+9hat(k))xx(3hat(i)-lambda hat(j)+mu hat(k))=hat(0)`.

A

`lambda =-9` and `mu = 27`

B

`lambda =9` and `mu = 27`

C

`lambda =-3` and `mu = 27`

D

`lambda =-9` and `mu = -27`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \lambda \) and \( \mu \) such that the cross product of the vectors \( \hat{i} + 3\hat{j} + 9\hat{k} \) and \( 3\hat{i} - \lambda\hat{j} + \mu\hat{k} \) equals the zero vector \( \hat{0} \). ### Step-by-Step Solution: 1. **Set up the cross product**: We need to compute the cross product: \[ (\hat{i} + 3\hat{j} + 9\hat{k}) \times (3\hat{i} - \lambda\hat{j} + \mu\hat{k}) = \hat{0} \] 2. **Write the determinant**: The cross product can be expressed as a determinant: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & 9 \\ 3 & -\lambda & \mu \end{vmatrix} \] 3. **Expand the determinant**: We will expand this determinant using the first row: \[ = \hat{i} \begin{vmatrix} 3 & 9 \\ -\lambda & \mu \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 9 \\ 3 & \mu \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 3 \\ 3 & -\lambda \end{vmatrix} \] 4. **Calculate the 2x2 determinants**: - For \( \hat{i} \): \[ \begin{vmatrix} 3 & 9 \\ -\lambda & \mu \end{vmatrix} = 3\mu + 9\lambda \] - For \( \hat{j} \): \[ \begin{vmatrix} 1 & 9 \\ 3 & \mu \end{vmatrix} = 1 \cdot \mu - 9 \cdot 3 = \mu - 27 \] - For \( \hat{k} \): \[ \begin{vmatrix} 1 & 3 \\ 3 & -\lambda \end{vmatrix} = 1 \cdot (-\lambda) - 3 \cdot 3 = -\lambda - 9 \] 5. **Combine the results**: Putting it all together, we have: \[ (3\mu + 9\lambda)\hat{i} - (\mu - 27)\hat{j} + (-\lambda - 9)\hat{k} = \hat{0} \] 6. **Set coefficients equal to zero**: For the equation to hold true, the coefficients of \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \) must all equal zero: \[ 3\mu + 9\lambda = 0 \quad (1) \] \[ \mu - 27 = 0 \quad (2) \] \[ -\lambda - 9 = 0 \quad (3) \] 7. **Solve the equations**: From equation (2): \[ \mu = 27 \] From equation (3): \[ -\lambda = 9 \implies \lambda = -9 \] 8. **Final values**: Thus, the values of \( \lambda \) and \( \mu \) are: \[ \lambda = -9, \quad \mu = 27 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar (Example)|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (a) Short Answer Type Questions|21 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find lambda and mu if (2hat i+6hat j+27hat k)xx(hat i+lambdahat j+muhat k)=hat 0 .

Find lambda and mu if (2hat i+6hat j+27hat k)xx(hat i+lambdahat j+muhat k)=rarr0

Find 'lambda' if the vectors : hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k) and hat(i)+lambda hat(j)-3hat(k) are coplanar.

What is the value of lambda for which (lambda hat(i)+hat(j)-hat(k))xx(3hat(i)-2hat(j)+4hat(k))=(2hat(i)-11 hat(j)-7 hat(k)) ?

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

The number of distinct real values of lambda , for which the vectors -lambda^(2)hat(i)+hat(j)+hat(k), hat(i)-lambda^(2)hat(j)+hat(k) and hat(i)+hat(j)-lambda^(2)hat(k) are coplanar, is

The value of 'lambda' for which the two vectors : 2hat(i)-hat(j)+2hat(k) and 3hat(i)+lambda hat(j)+hat(k) are perpendicular is :

Find the value of : (i) (hat(i) xxhat(j))*hat (k) + hat(i)* hat(j) (ii) (hat(k) xx hat(j))* hat(i) +hat(j)* hat(k) hat(i) xx (hat(j) + hat(k) )+hat(j) xx(hat(k) +hat(i))+ hat(k) xx (hat(i)+hat(j))

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Find 'lambda' when the vectors : vec(a)=2hat(i)+lambda hat(j)+hat(k) and vec(b)=hat(i)-2hat(j)+3hat(k) are perpendicular to each other.

MODERN PUBLICATION-VECTOR ALGEBRA -Frequently Asked Questions (Example)
  1. If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec...

    Text Solution

    |

  2. Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3h...

    Text Solution

    |

  3. If vec a ,\ vec b ,\ vec c are three mutually perpendicular vectors...

    Text Solution

    |

  4. Find a vector vec a of magnitude 5sqrt(2) making an angle pi/4 with x-...

    Text Solution

    |

  5. Let vec(A)=4hat(i)+5hat(j)-hat(k), vec(b)=hat(i)-4hat(j)+5hat(k) and v...

    Text Solution

    |

  6. If with reference to a right handed system of mutually perpendicula...

    Text Solution

    |

  7. If vectors vec a\ a n d\ vec b\ are such that | vec a|=3,\ | vec b|...

    Text Solution

    |

  8. If 'theta' is the angle between the vectors : vec(a)=hat(i)+2hat(j)+3h...

    Text Solution

    |

  9. Find 'lambda' and 'mu' if : (hat(i)+3hat(j)+9hat(k))xx(3hat(i)-lam...

    Text Solution

    |

  10. If vec a= hat i+ hat j+ hat kand vec b= hat j- hat k ,find a vect...

    Text Solution

    |

  11. If vec(r )=x hat(i)+y hat(j)+x hat(k), find : (vec(r )xx hat(i)).(vec...

    Text Solution

    |

  12. If vec(a) xx vec(b)= vec(c) xx vec(d) and vec(a) xx vec(c) =vec(b) xx ...

    Text Solution

    |

  13. Find a vector of magnitude 7 units, which is perpendicular to two vect...

    Text Solution

    |

  14. Find the area of the parallelogram whose adjacent sides are determined...

    Text Solution

    |

  15. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  16. Find the area of a triangle having the pointsA(1, 1, 1), B(1, 2, 3)and...

    Text Solution

    |

  17. If vec(a)=2hat(i)-3hat(j)+4hat(k) and vec(b)=5hat(i)+hat(j)-hat(k) r...

    Text Solution

    |

  18. If vec(a), vec(b), vec(c ) are the position vectors of the vecrtices A...

    Text Solution

    |

  19. Largange's Identify. Prove that (vec(a)xx vec(b))^(2)=|vec(a)|^(2)|vec...

    Text Solution

    |

  20. Show that vec(a)xx vec(b)=vec(a)xx vec(c ) does not imply vec(b)=vec(c...

    Text Solution

    |