Home
Class 12
MATHS
If vec(r )=x hat(i)+y hat(j)+x hat(k), f...

If `vec(r )=x hat(i)+y hat(j)+x hat(k)`, find : `(vec(r )xx hat(i)).(vec(r )xx hat(j))+xy`.

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( \vec{r} \times \hat{i} \cdot \vec{r} \times \hat{j} + xy \). Let's break this down step by step. ### Step 1: Define the vector \(\vec{r}\) Given: \[ \vec{r} = x \hat{i} + y \hat{j} + x \hat{k} \] ### Step 2: Calculate \(\vec{r} \times \hat{i}\) Using the cross product formula: \[ \vec{r} \times \hat{i} = (x \hat{i} + y \hat{j} + x \hat{k}) \times \hat{i} \] Using the properties of the cross product: - \(\hat{i} \times \hat{i} = \vec{0}\) - \(\hat{j} \times \hat{i} = -\hat{k}\) - \(\hat{k} \times \hat{i} = \hat{j}\) Calculating: \[ \vec{r} \times \hat{i} = (x \hat{i}) \times \hat{i} + (y \hat{j}) \times \hat{i} + (x \hat{k}) \times \hat{i} \] \[ = \vec{0} + y (-\hat{k}) + x \hat{j} \] \[ = -y \hat{k} + x \hat{j} \] Thus, \[ \vec{r} \times \hat{i} = x \hat{j} - y \hat{k} \] ### Step 3: Calculate \(\vec{r} \times \hat{j}\) Now, calculate: \[ \vec{r} \times \hat{j} = (x \hat{i} + y \hat{j} + x \hat{k}) \times \hat{j} \] Using the properties of the cross product: - \(\hat{j} \times \hat{j} = \vec{0}\) - \(\hat{i} \times \hat{j} = \hat{k}\) - \(\hat{k} \times \hat{j} = -\hat{i}\) Calculating: \[ \vec{r} \times \hat{j} = (x \hat{i}) \times \hat{j} + (y \hat{j}) \times \hat{j} + (x \hat{k}) \times \hat{j} \] \[ = x \hat{k} + \vec{0} + x (-\hat{i}) \] \[ = x \hat{k} - x \hat{i} \] Thus, \[ \vec{r} \times \hat{j} = -x \hat{i} + x \hat{k} \] ### Step 4: Calculate the dot product \((\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j})\) Now we find: \[ (\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) = (x \hat{j} - y \hat{k}) \cdot (-x \hat{i} + x \hat{k}) \] Calculating the dot product: \[ = (x \hat{j}) \cdot (-x \hat{i}) + (x \hat{j}) \cdot (x \hat{k}) + (-y \hat{k}) \cdot (-x \hat{i}) + (-y \hat{k}) \cdot (x \hat{k}) \] \[ = 0 + 0 + 0 - yx \] Thus, \[ (\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) = -xy \] ### Step 5: Combine with \(xy\) Now we add \(xy\): \[ (\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) + xy = -xy + xy = 0 \] ### Final Answer The final result is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar (Example)|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (a) Short Answer Type Questions|21 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(r )= x hat(i) + y hat(j) + z hat(k) , then what is vec(r ). (hat(i ) + hat(j) + hat(k)) equal to?

If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + hat(k) and vec(c )= hat(i) + hat(j) - hat(k) , then what is vec(a) xx (vec(b)+ vec(c )) + vec(b) xx (vec(c ) + vec(a)) + vec(c ) xx (vec(a) + vec(b)) is equal to ?

Let vec( a) = 2 hat(i) - 3 hat(j) + 4 hat(k) and vec( b) = 7 hat(i) + hat(j) - 6 hat(k) . If vec( r ) xx vec( a) = vec( r ) xx vec( b) , vec( r ) . ( hat(i) +2 hat(j) + hat(k)) = -3 , then vec ( r ). ( 2 hat(i)- 3hat(j) + hat(k)) is equal to :

If vec(r)=xhat(i)+yhat(j)+zhat(k) , then what is vec(r).(hat(i)+hat(j)+hat(k)) equal to?

If vec(a) = hat(i)- hat(k) , vec(b) = x hat(i) + hat(j) + (1-x) hat(k), vec(c ) = y hat(i) + x hat(j) + (1+ x- y)hat(k) then vec(a).(vec(b) xx vec(c )) depends on

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

If vec(a) = (hat(i) - 2 hat(j)+ 3 hat(k)) and vec(b) = (2 hat(i) + 3 hat(j)- 5 hat(k)) then find (vec(a) xx vec(b)) and " verify that " (vec(a) xx vec(b)) is perpendicular to each one of vec(a) and vec(b) .

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a) = 3 hat(i) + 2 hat(k) , vec(b) = 3hat(j) - hat(k) and vec(c ) = hat(i) + hat(j) + hat(k) . Find ( vec(a) xx vec(b)). vec(c ) .

If vec(a) = 4 hat(i) + 3 hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(k) Find |vec(b) xx 2 vec(a)| .

MODERN PUBLICATION-VECTOR ALGEBRA -Frequently Asked Questions (Example)
  1. If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec...

    Text Solution

    |

  2. Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3h...

    Text Solution

    |

  3. If vec a ,\ vec b ,\ vec c are three mutually perpendicular vectors...

    Text Solution

    |

  4. Find a vector vec a of magnitude 5sqrt(2) making an angle pi/4 with x-...

    Text Solution

    |

  5. Let vec(A)=4hat(i)+5hat(j)-hat(k), vec(b)=hat(i)-4hat(j)+5hat(k) and v...

    Text Solution

    |

  6. If with reference to a right handed system of mutually perpendicula...

    Text Solution

    |

  7. If vectors vec a\ a n d\ vec b\ are such that | vec a|=3,\ | vec b|...

    Text Solution

    |

  8. If 'theta' is the angle between the vectors : vec(a)=hat(i)+2hat(j)+3h...

    Text Solution

    |

  9. Find 'lambda' and 'mu' if : (hat(i)+3hat(j)+9hat(k))xx(3hat(i)-lam...

    Text Solution

    |

  10. If vec a= hat i+ hat j+ hat kand vec b= hat j- hat k ,find a vect...

    Text Solution

    |

  11. If vec(r )=x hat(i)+y hat(j)+x hat(k), find : (vec(r )xx hat(i)).(vec...

    Text Solution

    |

  12. If vec(a) xx vec(b)= vec(c) xx vec(d) and vec(a) xx vec(c) =vec(b) xx ...

    Text Solution

    |

  13. Find a vector of magnitude 7 units, which is perpendicular to two vect...

    Text Solution

    |

  14. Find the area of the parallelogram whose adjacent sides are determined...

    Text Solution

    |

  15. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  16. Find the area of a triangle having the pointsA(1, 1, 1), B(1, 2, 3)and...

    Text Solution

    |

  17. If vec(a)=2hat(i)-3hat(j)+4hat(k) and vec(b)=5hat(i)+hat(j)-hat(k) r...

    Text Solution

    |

  18. If vec(a), vec(b), vec(c ) are the position vectors of the vecrtices A...

    Text Solution

    |

  19. Largange's Identify. Prove that (vec(a)xx vec(b))^(2)=|vec(a)|^(2)|vec...

    Text Solution

    |

  20. Show that vec(a)xx vec(b)=vec(a)xx vec(c ) does not imply vec(b)=vec(c...

    Text Solution

    |