Home
Class 12
MATHS
If vec(a)=2hat(i)-3hat(j)+4hat(k) and v...

If `vec(a)=2hat(i)-3hat(j)+4hat(k)` and `vec(b)=5hat(i)+hat(j)-hat(k)` represent sides of parallelogram, then find both diagonals and a unit vector perpendicular to both diagonals of parallelogram.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the diagonals of the parallelogram formed by the vectors \(\vec{a}\) and \(\vec{b}\), and then find a unit vector that is perpendicular to both diagonals. ### Step 1: Identify the vectors Given: \[ \vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k} \] \[ \vec{b} = 5\hat{i} + \hat{j} - \hat{k} \] ### Step 2: Find the first diagonal \(\vec{d_1}\) The first diagonal of the parallelogram can be found by adding the two vectors: \[ \vec{d_1} = \vec{a} + \vec{b} \] Calculating this: \[ \vec{d_1} = (2\hat{i} - 3\hat{j} + 4\hat{k}) + (5\hat{i} + \hat{j} - \hat{k}) \] \[ = (2 + 5)\hat{i} + (-3 + 1)\hat{j} + (4 - 1)\hat{k} \] \[ = 7\hat{i} - 2\hat{j} + 3\hat{k} \] ### Step 3: Find the second diagonal \(\vec{d_2}\) The second diagonal can be found by subtracting vector \(\vec{b}\) from vector \(\vec{a}\): \[ \vec{d_2} = \vec{a} - \vec{b} \] Calculating this: \[ \vec{d_2} = (2\hat{i} - 3\hat{j} + 4\hat{k}) - (5\hat{i} + \hat{j} - \hat{k}) \] \[ = (2 - 5)\hat{i} + (-3 - 1)\hat{j} + (4 + 1)\hat{k} \] \[ = -3\hat{i} - 4\hat{j} + 5\hat{k} \] ### Step 4: Find the cross product of the diagonals To find a vector perpendicular to both diagonals, we calculate the cross product \(\vec{d_1} \times \vec{d_2}\): \[ \vec{d_1} \times \vec{d_2} = (7\hat{i} - 2\hat{j} + 3\hat{k}) \times (-3\hat{i} - 4\hat{j} + 5\hat{k}) \] Using the determinant method: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 7 & -2 & 3 \\ -3 & -4 & 5 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -2 & 3 \\ -4 & 5 \end{vmatrix} - \hat{j} \begin{vmatrix} 7 & 3 \\ -3 & 5 \end{vmatrix} + \hat{k} \begin{vmatrix} 7 & -2 \\ -3 & -4 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} -2 & 3 \\ -4 & 5 \end{vmatrix} = (-2)(5) - (3)(-4) = -10 + 12 = 2\) 2. \(\begin{vmatrix} 7 & 3 \\ -3 & 5 \end{vmatrix} = (7)(5) - (3)(-3) = 35 + 9 = 44\) 3. \(\begin{vmatrix} 7 & -2 \\ -3 & -4 \end{vmatrix} = (7)(-4) - (-2)(-3) = -28 - 6 = -34\) Putting it all together: \[ \vec{d_1} \times \vec{d_2} = 2\hat{i} - 44\hat{j} - 34\hat{k} \] ### Step 5: Find the magnitude of the cross product Calculating the magnitude: \[ |\vec{d_1} \times \vec{d_2}| = \sqrt{(2)^2 + (-44)^2 + (-34)^2} \] \[ = \sqrt{4 + 1936 + 1156} = \sqrt{3096} \] ### Step 6: Find the unit vector perpendicular to both diagonals The unit vector \(\hat{n}\) is given by: \[ \hat{n} = \frac{\vec{d_1} \times \vec{d_2}}{|\vec{d_1} \times \vec{d_2}|} \] Substituting the values: \[ \hat{n} = \frac{2\hat{i} - 44\hat{j} - 34\hat{k}}{\sqrt{3096}} \] ### Final Answer The diagonals of the parallelogram are: 1. \(\vec{d_1} = 7\hat{i} - 2\hat{j} + 3\hat{k}\) 2. \(\vec{d_2} = -3\hat{i} - 4\hat{j} + 5\hat{k}\) The unit vector perpendicular to both diagonals is: \[ \hat{n} = \frac{2\hat{i} - 44\hat{j} - 34\hat{k}}{\sqrt{3096}} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar (Example)|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (a) Short Answer Type Questions|21 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If the vectors hat(i)-3hat(j)+2hat(k), -hat(i)+2hat(j) represent the diagonals of a parallelogram, then its area will be

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

The vectors AB=3hat i-2hat j+2hat k and vec BC=-hat i+2hat k are the adjacent sides of a parallelogram ABCD then the angle between the diagonals is

MODERN PUBLICATION-VECTOR ALGEBRA -Frequently Asked Questions (Example)
  1. If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec...

    Text Solution

    |

  2. Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3h...

    Text Solution

    |

  3. If vec a ,\ vec b ,\ vec c are three mutually perpendicular vectors...

    Text Solution

    |

  4. Find a vector vec a of magnitude 5sqrt(2) making an angle pi/4 with x-...

    Text Solution

    |

  5. Let vec(A)=4hat(i)+5hat(j)-hat(k), vec(b)=hat(i)-4hat(j)+5hat(k) and v...

    Text Solution

    |

  6. If with reference to a right handed system of mutually perpendicula...

    Text Solution

    |

  7. If vectors vec a\ a n d\ vec b\ are such that | vec a|=3,\ | vec b|...

    Text Solution

    |

  8. If 'theta' is the angle between the vectors : vec(a)=hat(i)+2hat(j)+3h...

    Text Solution

    |

  9. Find 'lambda' and 'mu' if : (hat(i)+3hat(j)+9hat(k))xx(3hat(i)-lam...

    Text Solution

    |

  10. If vec a= hat i+ hat j+ hat kand vec b= hat j- hat k ,find a vect...

    Text Solution

    |

  11. If vec(r )=x hat(i)+y hat(j)+x hat(k), find : (vec(r )xx hat(i)).(vec...

    Text Solution

    |

  12. If vec(a) xx vec(b)= vec(c) xx vec(d) and vec(a) xx vec(c) =vec(b) xx ...

    Text Solution

    |

  13. Find a vector of magnitude 7 units, which is perpendicular to two vect...

    Text Solution

    |

  14. Find the area of the parallelogram whose adjacent sides are determined...

    Text Solution

    |

  15. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  16. Find the area of a triangle having the pointsA(1, 1, 1), B(1, 2, 3)and...

    Text Solution

    |

  17. If vec(a)=2hat(i)-3hat(j)+4hat(k) and vec(b)=5hat(i)+hat(j)-hat(k) r...

    Text Solution

    |

  18. If vec(a), vec(b), vec(c ) are the position vectors of the vecrtices A...

    Text Solution

    |

  19. Largange's Identify. Prove that (vec(a)xx vec(b))^(2)=|vec(a)|^(2)|vec...

    Text Solution

    |

  20. Show that vec(a)xx vec(b)=vec(a)xx vec(c ) does not imply vec(b)=vec(c...

    Text Solution

    |