Home
Class 12
MATHS
If vec(a), vec(b), vec(c ) are the posit...

If `vec(a), vec(b), vec(c )` are the position vectors of the vecrtices A, B, C of a `Delta ABC` respectively, find an expression for the area of `Delta ABC` and hence deduce the condition for the points A, B, C to be collinear.

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of triangle ABC given the position vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) of vertices A, B, and C respectively, we can follow these steps: ### Step 1: Define the vectors Let: - \(\vec{A} = \vec{a}\) (position vector of vertex A) - \(\vec{B} = \vec{b}\) (position vector of vertex B) - \(\vec{C} = \vec{c}\) (position vector of vertex C) ### Step 2: Find the vectors representing the sides of the triangle The vectors representing the sides of triangle ABC can be defined as: - \(\vec{AB} = \vec{B} - \vec{A} = \vec{b} - \vec{a}\) - \(\vec{AC} = \vec{C} - \vec{A} = \vec{c} - \vec{a}\) ### Step 3: Use the cross product to find the area The area \(A\) of triangle ABC can be calculated using the formula: \[ A = \frac{1}{2} \left| \vec{AB} \times \vec{AC} \right| \] Substituting the expressions for \(\vec{AB}\) and \(\vec{AC}\): \[ A = \frac{1}{2} \left| (\vec{b} - \vec{a}) \times (\vec{c} - \vec{a}) \right| \] ### Step 4: Simplify the expression Using the properties of the cross product: \[ A = \frac{1}{2} \left| \vec{b} - \vec{a} \times \vec{c} - \vec{a} \right| \] This can be rewritten as: \[ A = \frac{1}{2} \left| (\vec{c} - \vec{a}) \times (\vec{b} - \vec{a}) \right| \] ### Step 5: Condition for collinearity For points A, B, and C to be collinear, the area of triangle ABC must be zero: \[ \frac{1}{2} \left| (\vec{c} - \vec{a}) \times (\vec{b} - \vec{a}) \right| = 0 \] This implies: \[ \left| (\vec{c} - \vec{a}) \times (\vec{b} - \vec{a}) \right| = 0 \] The cross product is zero when the vectors are parallel, which indicates that points A, B, and C are collinear. ### Final Expression for Area Thus, the area of triangle ABC is given by: \[ A = \frac{1}{2} \left| (\vec{b} - \vec{a}) \times (\vec{c} - \vec{a}) \right| \] And the condition for collinearity of points A, B, and C is: \[ (\vec{c} - \vec{a}) \times (\vec{b} - \vec{a}) = \vec{0} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar (Example)|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (a) Short Answer Type Questions|21 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec a,vec b,vec c are position vectors of the vertices A,B and C respectively,of a trriangle ABC, write the value of vec AB+vec BC+vec CA

If vec a,vec b,vec c are the position vectors of the vertices of an equilateral triangle whose orthocenter is at the origin,then

If vec a,vec b,vec c are the position vectors of the vertices A,B,C of a triangle ABC, show that the area triangle ABCis(1)/(2)|vec a xxvec b+vec b xxvec c+vec c xxvec a| Deduce the condition for points vec a,vec b,vec c to be collinear.

If veca, vecb and vecc are the position vectors of vertices A,B,C of a Delta ABC, show that the area of triangle ABC is 1/2| veca xx vecb + vecbxx vec c+vec c xx veca|. Deduce the condition for points veca, vecb and vecc to be collinear.

If vec a,vec b,vec c are position vectors of the vertices of a triangle,then write the position vector of its centroid.

If vec(b) and vec(c) are the position vectors of the points B and C respectively, then the position vector of the point D such that vec(BD) = 4 vec(BC) is

If vec(b) and vec(c ) are the position vectors of the points B and C respectively, then the position vector of the point D such that vec(BD)= 4 vec(BC) is

If vec(a),vec(b),vec(c) are the position vectors of the points A, B, C respectively such that 3vec(a)+5vec(b)=8vec(c) then find the ratio in which C divides AB.

If vec a,vec b,vec c are position vector of vertices of a triangle ABC,then unit vector perpendicular to its plane is

MODERN PUBLICATION-VECTOR ALGEBRA -Frequently Asked Questions (Example)
  1. If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec...

    Text Solution

    |

  2. Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3h...

    Text Solution

    |

  3. If vec a ,\ vec b ,\ vec c are three mutually perpendicular vectors...

    Text Solution

    |

  4. Find a vector vec a of magnitude 5sqrt(2) making an angle pi/4 with x-...

    Text Solution

    |

  5. Let vec(A)=4hat(i)+5hat(j)-hat(k), vec(b)=hat(i)-4hat(j)+5hat(k) and v...

    Text Solution

    |

  6. If with reference to a right handed system of mutually perpendicula...

    Text Solution

    |

  7. If vectors vec a\ a n d\ vec b\ are such that | vec a|=3,\ | vec b|...

    Text Solution

    |

  8. If 'theta' is the angle between the vectors : vec(a)=hat(i)+2hat(j)+3h...

    Text Solution

    |

  9. Find 'lambda' and 'mu' if : (hat(i)+3hat(j)+9hat(k))xx(3hat(i)-lam...

    Text Solution

    |

  10. If vec a= hat i+ hat j+ hat kand vec b= hat j- hat k ,find a vect...

    Text Solution

    |

  11. If vec(r )=x hat(i)+y hat(j)+x hat(k), find : (vec(r )xx hat(i)).(vec...

    Text Solution

    |

  12. If vec(a) xx vec(b)= vec(c) xx vec(d) and vec(a) xx vec(c) =vec(b) xx ...

    Text Solution

    |

  13. Find a vector of magnitude 7 units, which is perpendicular to two vect...

    Text Solution

    |

  14. Find the area of the parallelogram whose adjacent sides are determined...

    Text Solution

    |

  15. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  16. Find the area of a triangle having the pointsA(1, 1, 1), B(1, 2, 3)and...

    Text Solution

    |

  17. If vec(a)=2hat(i)-3hat(j)+4hat(k) and vec(b)=5hat(i)+hat(j)-hat(k) r...

    Text Solution

    |

  18. If vec(a), vec(b), vec(c ) are the position vectors of the vecrtices A...

    Text Solution

    |

  19. Largange's Identify. Prove that (vec(a)xx vec(b))^(2)=|vec(a)|^(2)|vec...

    Text Solution

    |

  20. Show that vec(a)xx vec(b)=vec(a)xx vec(c ) does not imply vec(b)=vec(c...

    Text Solution

    |