Home
Class 12
MATHS
If vec(a)=-2hat(i)+3hat(j)+5hat(k), vec(...

If `vec(a)=-2hat(i)+3hat(j)+5hat(k), vec(b)=hat(i)+2hat(j)+3hat(k)` and `vec(c )=7 hat(i)-hat(k)` are position vectors of three points A, B, C respectively, prove that A, B, C are collinear.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the points A, B, and C represented by the position vectors \(\vec{a} = -2\hat{i} + 3\hat{j} + 5\hat{k}\), \(\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}\), and \(\vec{c} = 7\hat{i} - \hat{k}\) are collinear, we can follow these steps: ### Step 1: Find the vector \(\vec{AB}\) The vector \(\vec{AB}\) can be found using the formula: \[ \vec{AB} = \vec{b} - \vec{a} \] Substituting the values of \(\vec{a}\) and \(\vec{b}\): \[ \vec{AB} = (\hat{i} + 2\hat{j} + 3\hat{k}) - (-2\hat{i} + 3\hat{j} + 5\hat{k}) \] Calculating this gives: \[ \vec{AB} = \hat{i} + 2\hat{j} + 3\hat{k} + 2\hat{i} - 3\hat{j} - 5\hat{k} \] \[ \vec{AB} = (1 + 2)\hat{i} + (2 - 3)\hat{j} + (3 - 5)\hat{k} \] \[ \vec{AB} = 3\hat{i} - \hat{j} - 2\hat{k} \] ### Step 2: Find the vector \(\vec{BC}\) Next, we find the vector \(\vec{BC}\): \[ \vec{BC} = \vec{c} - \vec{b} \] Substituting the values of \(\vec{b}\) and \(\vec{c}\): \[ \vec{BC} = (7\hat{i} - \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) \] Calculating this gives: \[ \vec{BC} = 7\hat{i} - \hat{k} - \hat{i} - 2\hat{j} - 3\hat{k} \] \[ \vec{BC} = (7 - 1)\hat{i} - 2\hat{j} + (-1 - 3)\hat{k} \] \[ \vec{BC} = 6\hat{i} - 2\hat{j} - 4\hat{k} \] ### Step 3: Check for collinearity To check if the vectors \(\vec{AB}\) and \(\vec{BC}\) are collinear, we need to see if \(\vec{BC}\) is a scalar multiple of \(\vec{AB}\). We can express this as: \[ \vec{BC} = k \cdot \vec{AB} \] for some scalar \(k\). From our calculations: \[ \vec{AB} = 3\hat{i} - \hat{j} - 2\hat{k} \] \[ \vec{BC} = 6\hat{i} - 2\hat{j} - 4\hat{k} \] Now, we can find \(k\) by comparing components: - For \(\hat{i}\): \(6 = 2 \cdot 3\) implies \(k = 2\) - For \(\hat{j}\): \(-2 = 2 \cdot -1\) confirms \(k = 2\) - For \(\hat{k}\): \(-4 = 2 \cdot -2\) confirms \(k = 2\) Since all components yield the same scalar \(k\), we conclude that: \[ \vec{BC} = 2 \cdot \vec{AB} \] ### Conclusion Since \(\vec{BC}\) is a scalar multiple of \(\vec{AB}\), the points A, B, and C are collinear. ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Long Answer Type Questions (II)|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (d) Long Answer Type Questions (I)|6 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Short Answer Type Questions|39 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a)=2hat(i)+hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k) , and vec(c)=-3hat(i)+hat(j)+2hat(k) , find [hat(a)hat(b)hat(c)] .

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j) are three vectors such that vec(a)+t vec(b) is perpendicular to vec(c) , then what is t equal to ?

The three vector vec(A) = 3hat(i)-2hat(j)+hat(k), vec(B)= hat(i)-3hat(j)+5hat(k) and vec(C )= 2hat(i)+hat(j)-4hat(k) from

If vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b)=(hat(i)-3hat(j)-5hat(k)) and vec(c)=(3hat(i)-4hat(j)-hat(k)) , find [vec(a)vec(b)vec(c)] and interpret the result.

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?