Home
Class 12
MATHS
Prove that a necessary and sufficient...

Prove that a necessary and sufficient condition for three vectors ` vec a , vec b` and ` vec c` to be coplanar is that there exist scalars `l , m , n` not all zero simultaneously such that `l vec a+m vec b+n vec c= vec0dot`

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (d) Long Answer Type Questions (I)|6 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (d) Long Answer Type Questions (II)|1 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Long Answer Type Questions (I)|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Prove that a necessary and sufficient condition for three vectors vec a,vec b and vec c to be coplanar is that there exist scalars l,m,n not all zero simultaneously such that lvec a+mvec b+nvec c=vec 0

The vectors vec a,vec b,vec c,vec d are coplanar then

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

If vec a xxvec b=vec b xxvec c!=0, where vec a,vec b and vec c are coplanar vectors,then for some scalar k

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If the three vectors vec a,vec b,vec c are coplanar, prove that the vectors vec a+vec b,vec b+vec c and vec c+vec a are also coplanar.

Show that vectors vec a,vec b,vec c are coplanar if vec a+vec b,vec b+vec c,vec c+vec a are coplanar.

For any three vectors vec a;vec b;vec c find [vec a+vec b;vec b+vec c;vec c+vec a]

If the vectors vec a, vec b, vec c are coplanar, then the value of | (vec a, vec b, vec c), (vec a * vec a, vec a * vec b, vec a * vec c), (vec b * vec a, vec b * vec b, vecb * vec c) | =