Home
Class 12
MATHS
Find the angle between the vectors : ...

Find the angle between the vectors :
`vec(a)=3vec(i)-2vec(j)+vec(k)` and `vec(b)=vec(i)-2vec(j)-3vec(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{a} = 3\vec{i} - 2\vec{j} + \vec{k}\) and \(\vec{b} = \vec{i} - 2\vec{j} - 3\vec{k}\), we can use the formula for the cosine of the angle \(\theta\) between two vectors: \[ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \] ### Step 1: Calculate the dot product \(\vec{a} \cdot \vec{b}\) The dot product of two vectors \(\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}\) and \(\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}\) is given by: \[ \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 \] For our vectors: - \(\vec{a} = 3\vec{i} - 2\vec{j} + 1\vec{k}\) (where \(a_1 = 3\), \(a_2 = -2\), \(a_3 = 1\)) - \(\vec{b} = 1\vec{i} - 2\vec{j} - 3\vec{k}\) (where \(b_1 = 1\), \(b_2 = -2\), \(b_3 = -3\)) Calculating the dot product: \[ \vec{a} \cdot \vec{b} = (3)(1) + (-2)(-2) + (1)(-3) = 3 + 4 - 3 = 4 \] ### Step 2: Calculate the magnitudes of \(\vec{a}\) and \(\vec{b}\) The magnitude of a vector \(\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}\) is given by: \[ |\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2} \] Calculating the magnitude of \(\vec{a}\): \[ |\vec{a}| = \sqrt{3^2 + (-2)^2 + 1^2} = \sqrt{9 + 4 + 1} = \sqrt{14} \] Calculating the magnitude of \(\vec{b}\): \[ |\vec{b}| = \sqrt{1^2 + (-2)^2 + (-3)^2} = \sqrt{1 + 4 + 9} = \sqrt{14} \] ### Step 3: Substitute into the cosine formula Now we can substitute the values into the cosine formula: \[ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{4}{\sqrt{14} \cdot \sqrt{14}} = \frac{4}{14} = \frac{2}{7} \] ### Step 4: Find the angle \(\theta\) To find \(\theta\), we take the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{2}{7}\right) \] ### Final Answer Thus, the angle between the vectors \(\vec{a}\) and \(\vec{b}\) is: \[ \theta = \cos^{-1}\left(\frac{2}{7}\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (I)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (d) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the following vectors: (i)vec a=vec i+2vec j+2vec kvec b=vec i-2vec j+2vec k

A vector of magnitude 3 bisecting the angle between the vectors vec a=2vec i+vec j-vec k and vec b=vec i-2vec j+vec k and making an obtuse angle with vec b is

If a vector vec r of magnitude 3sqrt(6) is directed along the bisector of the angle between the vectors vec a=7vec i-4vec j-4vec k and vec b=-2vec i-vec j+2vec k, then vec r is equal to

The value of lambda for two perpendicular vectors vec(A)=2vec(i)+lambdavec(j)+vec(k) and vec(B)=4vec(i)-2vec(j)-2vec(k) is :-

The vector vec x directed along the bisector of the angle between the vector vec a=7vec i-4vec j-4vec k and vec b=-2vec i-vec j+2vec k if |x|=45 is

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

The sine of the angle between the vectors vec i+3vec j+2vec k and 2vec i-4vec j+vec k is

The position of the particle is given by vec(r )=(vec(i)+2vec(j)-vec(k)) momentum vec(P)= (3vec(i)+4vec(j)-2vec(k)) . The angular momentum is perpendicular to

Find the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) , if vec(a)=(2 hat(i)-hat(j)+3hat(k)) and vec(b)=(3hat(i)+hat(j)+2hat(k)) .

Find the angle between the vectors vec a and vec b where: vec a=3hat i-2hat j-jhat k and vec b=4hat i-hat j+8hat k

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (e ) Short Answer Type Questions
  1. Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) "...

    Text Solution

    |

  2. Find the angle between the vectors : vec(a)=3vec(i)-2vec(j)+vec(k...

    Text Solution

    |

  3. Find the angle between the vectors : vec(a)=2hat(i)-hat(j)+2hat(k...

    Text Solution

    |

  4. What is the cosine of the angle which the vector sqrt(2) hat i+ hat j+...

    Text Solution

    |

  5. Find the angle between two vectors vec(a) and vec(b) such that : ...

    Text Solution

    |

  6. Find the angle between two vectors vec a and vec b with magnitudes 1 a...

    Text Solution

    |

  7. Find the magnitude of two vectors -> aand -> bhaving the same magni...

    Text Solution

    |

  8. If vec adot vec a=0 and vec adot vec b=0, what can you conclude abou...

    Text Solution

    |

  9. If either vector -> a= ->0 or -> b= ->0 , then -> adot -> b=0...

    Text Solution

    |

  10. Find the scalar projection of : vec(a)=7hat(i)+hat(j)-4hat(k) on v...

    Text Solution

    |

  11. Find the scalar projection of : vec(a)=3hat(i)-2hat(j)+hat(k) on ...

    Text Solution

    |

  12. Find the scalar projection of : vec(a)=2hat(i)+3hat(j)+2hat(k) on ...

    Text Solution

    |

  13. Find the scalar projection of : vec(a)=hat(i)-hat(j) on vec(b)=hat...

    Text Solution

    |

  14. Find the scalar projection of : vec(a)=hat(i)+3hat(j)+7hat(k) on ...

    Text Solution

    |

  15. Find the scalar projection of vec(b) on vec(a), when : vec(a)=2hat(...

    Text Solution

    |

  16. Find the scalar projection of vec(b) on vec(a), when : vec(a)=2hat(...

    Text Solution

    |

  17. Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) ...

    Text Solution

    |

  18. Find the vector projection of the vector : 2hat(i)-hat(j)+hat(k) ...

    Text Solution

    |

  19. Find lambda, when the projection of vec a=lambda hat i+ hat j+4 hat k...

    Text Solution

    |

  20. Show that the vector vec a=1/7(2 hat i+3 hat j+6 hat k),\ vec b=1/7(...

    Text Solution

    |