Home
Class 12
MATHS
Find the angle between the vectors : ...

Find the angle between the vectors :
`vec(a)=2hat(i)-hat(j)+2hat(k) " and " vec(b)=6hat(i)+2hat(j)+3hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}\) and \(\vec{b} = 6\hat{i} + 2\hat{j} + 3\hat{k}\), we can use the formula involving the dot product of the vectors: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] where \(\theta\) is the angle between the two vectors. ### Step 1: Calculate the dot product \(\vec{a} \cdot \vec{b}\) The dot product is calculated as follows: \[ \vec{a} \cdot \vec{b} = (2)(6) + (-1)(2) + (2)(3) \] Calculating each term: - \(2 \cdot 6 = 12\) - \(-1 \cdot 2 = -2\) - \(2 \cdot 3 = 6\) Now, summing these results: \[ \vec{a} \cdot \vec{b} = 12 - 2 + 6 = 16 \] ### Step 2: Calculate the magnitudes of \(\vec{a}\) and \(\vec{b}\) The magnitude of vector \(\vec{a}\) is given by: \[ |\vec{a}| = \sqrt{(2)^2 + (-1)^2 + (2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] The magnitude of vector \(\vec{b}\) is given by: \[ |\vec{b}| = \sqrt{(6)^2 + (2)^2 + (3)^2} = \sqrt{36 + 4 + 9} = \sqrt{49} = 7 \] ### Step 3: Substitute the values into the dot product formula Now we can substitute the values we found into the dot product formula: \[ 16 = (3)(7) \cos \theta \] This simplifies to: \[ 16 = 21 \cos \theta \] ### Step 4: Solve for \(\cos \theta\) Rearranging gives: \[ \cos \theta = \frac{16}{21} \] ### Step 5: Find the angle \(\theta\) To find \(\theta\), we take the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{16}{21}\right) \] Thus, the angle between the vectors \(\vec{a}\) and \(\vec{b}\) is: \[ \theta = \cos^{-1}\left(\frac{16}{21}\right) \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (I)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (d) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

Find the sine of the angle between the vectors vec(a) =(2 hat(i) - hat(j) + 3 hat(k)) and vec(b) = (hat(i) + 3 hat(j) + 2 hat(k)).

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

If 'theta' is the angle between the vectors : vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) , find sin theta .

The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

Find the unit vector in the direction of the sum of the vectors : vec(a) = 2hat(i)-hat(j)+2hat(k) and vec(b)=-hat(i)+hat(j)+3hat(k) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

Find the vector of magnitude 3, bisecting the angle between the vectors vec a=2hat i+hat j-hat k and vec b=hat i-2hat j+hat k

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (e ) Short Answer Type Questions
  1. Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) "...

    Text Solution

    |

  2. Find the angle between the vectors : vec(a)=3vec(i)-2vec(j)+vec(k...

    Text Solution

    |

  3. Find the angle between the vectors : vec(a)=2hat(i)-hat(j)+2hat(k...

    Text Solution

    |

  4. What is the cosine of the angle which the vector sqrt(2) hat i+ hat j+...

    Text Solution

    |

  5. Find the angle between two vectors vec(a) and vec(b) such that : ...

    Text Solution

    |

  6. Find the angle between two vectors vec a and vec b with magnitudes 1 a...

    Text Solution

    |

  7. Find the magnitude of two vectors -> aand -> bhaving the same magni...

    Text Solution

    |

  8. If vec adot vec a=0 and vec adot vec b=0, what can you conclude abou...

    Text Solution

    |

  9. If either vector -> a= ->0 or -> b= ->0 , then -> adot -> b=0...

    Text Solution

    |

  10. Find the scalar projection of : vec(a)=7hat(i)+hat(j)-4hat(k) on v...

    Text Solution

    |

  11. Find the scalar projection of : vec(a)=3hat(i)-2hat(j)+hat(k) on ...

    Text Solution

    |

  12. Find the scalar projection of : vec(a)=2hat(i)+3hat(j)+2hat(k) on ...

    Text Solution

    |

  13. Find the scalar projection of : vec(a)=hat(i)-hat(j) on vec(b)=hat...

    Text Solution

    |

  14. Find the scalar projection of : vec(a)=hat(i)+3hat(j)+7hat(k) on ...

    Text Solution

    |

  15. Find the scalar projection of vec(b) on vec(a), when : vec(a)=2hat(...

    Text Solution

    |

  16. Find the scalar projection of vec(b) on vec(a), when : vec(a)=2hat(...

    Text Solution

    |

  17. Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) ...

    Text Solution

    |

  18. Find the vector projection of the vector : 2hat(i)-hat(j)+hat(k) ...

    Text Solution

    |

  19. Find lambda, when the projection of vec a=lambda hat i+ hat j+4 hat k...

    Text Solution

    |

  20. Show that the vector vec a=1/7(2 hat i+3 hat j+6 hat k),\ vec b=1/7(...

    Text Solution

    |