Home
Class 12
MATHS
Find the scalar projection of : vec(...

Find the scalar projection of :
`vec(a)=hat(i)-hat(j)` on `vec(b)=hat(i)+hat(j)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the scalar projection of vector **a** on vector **b**, we can use the formula: \[ \text{Scalar Projection of } \vec{a} \text{ on } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \] ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} - \hat{j} \] \[ \vec{b} = \hat{i} + \hat{j} \] ### Step 2: Calculate the dot product \(\vec{a} \cdot \vec{b}\) The dot product of two vectors \(\vec{a} = a_1 \hat{i} + a_2 \hat{j}\) and \(\vec{b} = b_1 \hat{i} + b_2 \hat{j}\) is given by: \[ \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 \] For our vectors: - \(a_1 = 1\) (coefficient of \(\hat{i}\) in \(\vec{a}\)) - \(a_2 = -1\) (coefficient of \(\hat{j}\) in \(\vec{a}\)) - \(b_1 = 1\) (coefficient of \(\hat{i}\) in \(\vec{b}\)) - \(b_2 = 1\) (coefficient of \(\hat{j}\) in \(\vec{b}\)) Calculating the dot product: \[ \vec{a} \cdot \vec{b} = (1)(1) + (-1)(1) = 1 - 1 = 0 \] ### Step 3: Calculate the magnitude of vector \(\vec{b}\) The magnitude of a vector \(\vec{b} = b_1 \hat{i} + b_2 \hat{j}\) is given by: \[ |\vec{b}| = \sqrt{b_1^2 + b_2^2} \] For our vector \(\vec{b}\): \[ |\vec{b}| = \sqrt{1^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2} \] ### Step 4: Calculate the scalar projection Now we can substitute the values into the scalar projection formula: \[ \text{Scalar Projection of } \vec{a} \text{ on } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{0}{\sqrt{2}} = 0 \] ### Final Answer The scalar projection of vector **a** on vector **b** is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (I)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (d) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the scalar projection of : vec(a)=3hat(i)-2hat(j)+hat(k) on vec(b)=hat(i)-2hat(j)-3hat(k)

Find the scalar projection of : vec(a)=hat(i)+3hat(j)+7hat(k) on vec(b)=7hat(i)-hat(j)+8hat(k) .

Find the scalar projection of : vec(a)=2hat(i)+3hat(j)+2hat(k) on vec(b)=hat(i)+2hat(j)+hat(k)

Find the scalar projection of : vec(a)=7hat(i)+hat(j)-4hat(k) on vec(b)=2hat(i)+6hat(j)+3hat(k)

Find the projection of vec(a) = 2 hat(i) - hat(j) + hat(k) on vec(b) = hat(i) - 2 hat(j) + hat(k) .

What is the projection of vec(a)=(2hat(i)-hat(j)+hat(k)) on vec(b)=(hat(i)-2hat(j)+hat(k))?

Find the scalar projection of vec(b) on vec(a) , when : vec(a)=2hat(i)+hat(j)+2hat(k) and vec(b)=hat(i)+2hat(j)+hat(k) .

Find the scalar projection of vec(b) on vec(a) , when : vec(a)=2hat(i)+2hat(j)-hat(k) and vec(b)=2hat(i)-hat(j)-4hat(k)

(i) Find the projection of vec(a) on vec(b) if vec(a).vec(b)=8 and vec(b)=(2hat(i)+6hat(j)+3hat(k)) . (ii) Write the projection of the vector (hat(i)+at(j)) on the vector (hat(i)-hat(j)) .

Find vec(A).vec(b) when (i) vec(a)=hat(i)-2hat(j)+hat(k) and vec(b)=3 hat(i)-4 hat(j)-2 hat(k) (ii) vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=-2hat(j)+4hat(k) (iii) vec(a)=hat(i)-hat(j)+5hat(k) and vec(b)=3 hat(i)-2 hat(k)

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (e ) Short Answer Type Questions
  1. If either vector -> a= ->0 or -> b= ->0 , then -> adot -> b=0...

    Text Solution

    |

  2. Find the scalar projection of : vec(a)=7hat(i)+hat(j)-4hat(k) on v...

    Text Solution

    |

  3. Find the scalar projection of : vec(a)=3hat(i)-2hat(j)+hat(k) on ...

    Text Solution

    |

  4. Find the scalar projection of : vec(a)=2hat(i)+3hat(j)+2hat(k) on ...

    Text Solution

    |

  5. Find the scalar projection of : vec(a)=hat(i)-hat(j) on vec(b)=hat...

    Text Solution

    |

  6. Find the scalar projection of : vec(a)=hat(i)+3hat(j)+7hat(k) on ...

    Text Solution

    |

  7. Find the scalar projection of vec(b) on vec(a), when : vec(a)=2hat(...

    Text Solution

    |

  8. Find the scalar projection of vec(b) on vec(a), when : vec(a)=2hat(...

    Text Solution

    |

  9. Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) ...

    Text Solution

    |

  10. Find the vector projection of the vector : 2hat(i)-hat(j)+hat(k) ...

    Text Solution

    |

  11. Find lambda, when the projection of vec a=lambda hat i+ hat j+4 hat k...

    Text Solution

    |

  12. Show that the vector vec a=1/7(2 hat i+3 hat j+6 hat k),\ vec b=1/7(...

    Text Solution

    |

  13. If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k), t...

    Text Solution

    |

  14. If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k), t...

    Text Solution

    |

  15. Write the value of 'p' for which : vec(a)=3hat(i)+2hat(j)+9hat(k) and...

    Text Solution

    |

  16. Find the value of 'lambda' such that the vectors vec(a) and vec(b) a...

    Text Solution

    |

  17. Find the value of 'lambda' such that the vectors vec(a) and vec(b) a...

    Text Solution

    |

  18. If 2hat(i)+hat(j)-3hat(k) and m hat(i)+3hat(j)-hat(k) are perpendicu...

    Text Solution

    |

  19. Show that the projection of vec(b) on vec(a) ne vec(0) is : ((vec(...

    Text Solution

    |

  20. Show that |vec(a)|vec(b)-|vec(b)|vec(a), for any two non - zero vector...

    Text Solution

    |