Home
Class 12
MATHS
Find the scalar projection of vec(b) on ...

Find the scalar projection of `vec(b)` on `vec(a)`, when :
`vec(a)=2hat(i)+hat(j)+2hat(k)` and `vec(b)=hat(i)+2hat(j)+hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the scalar projection of vector **b** on vector **a**, we can use the formula: \[ \text{Scalar Projection of } \vec{b} \text{ on } \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \] where \(\vec{a} \cdot \vec{b}\) is the dot product of vectors **a** and **b**, and \(|\vec{a}|\) is the magnitude of vector **a**. ### Step 1: Calculate the dot product \(\vec{a} \cdot \vec{b}\) Given: \[ \vec{a} = 2\hat{i} + \hat{j} + 2\hat{k} \] \[ \vec{b} = \hat{i} + 2\hat{j} + \hat{k} \] The dot product \(\vec{a} \cdot \vec{b}\) is calculated as follows: \[ \vec{a} \cdot \vec{b} = (2)(1) + (1)(2) + (2)(1) \] \[ = 2 + 2 + 2 = 6 \] ### Step 2: Calculate the magnitude of vector \(\vec{a}\) The magnitude \(|\vec{a}|\) is calculated using the formula: \[ |\vec{a}| = \sqrt{(2^2) + (1^2) + (2^2)} \] \[ = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] ### Step 3: Calculate the scalar projection Now we can substitute the values into the scalar projection formula: \[ \text{Scalar Projection of } \vec{b} \text{ on } \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} = \frac{6}{3} = 2 \] ### Final Answer: The scalar projection of vector **b** on vector **a** is **2**. ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (I)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (d) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the scalar projection of vec(b) on vec(a) , when : vec(a)=2hat(i)+2hat(j)-hat(k) and vec(b)=2hat(i)-hat(j)-4hat(k)

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

Find |vec(a)xx vec(b)| , if vec(a)=2hat(i)+hat(j)+3hat(k) and vec(b)=3hat(i)+5hat(j)-2hat(k) .

Find the unit vector in the direction of vec(a)-vec(b) , where : vec(a)=hat(i)+3hat(j)-hat(k), vec(b)=3hat(i)+2hat(j)+hat(k) .

Find a unit vector in the direction of (vec(a)+vec(b)) , where : vec(a)=2hat(i)+2hat(j)-5hat(k) and vec(b)=2hat(i)+hat(j)+3hat(k) .

Find the projection of vec(a) = 2 hat(i) - hat(j) + hat(k) on vec(b) = hat(i) - 2 hat(j) + hat(k) .

Find the scalar projection of : vec(a)=2hat(i)+3hat(j)+2hat(k) on vec(b)=hat(i)+2hat(j)+hat(k)

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

Find the scalar projection of : vec(a)=hat(i)-hat(j) on vec(b)=hat(i)+hat(j)

Find the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) , if vec(a)=(2 hat(i)-hat(j)+3hat(k)) and vec(b)=(3hat(i)+hat(j)+2hat(k)) .

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (e ) Short Answer Type Questions
  1. If either vector -> a= ->0 or -> b= ->0 , then -> adot -> b=0...

    Text Solution

    |

  2. Find the scalar projection of : vec(a)=7hat(i)+hat(j)-4hat(k) on v...

    Text Solution

    |

  3. Find the scalar projection of : vec(a)=3hat(i)-2hat(j)+hat(k) on ...

    Text Solution

    |

  4. Find the scalar projection of : vec(a)=2hat(i)+3hat(j)+2hat(k) on ...

    Text Solution

    |

  5. Find the scalar projection of : vec(a)=hat(i)-hat(j) on vec(b)=hat...

    Text Solution

    |

  6. Find the scalar projection of : vec(a)=hat(i)+3hat(j)+7hat(k) on ...

    Text Solution

    |

  7. Find the scalar projection of vec(b) on vec(a), when : vec(a)=2hat(...

    Text Solution

    |

  8. Find the scalar projection of vec(b) on vec(a), when : vec(a)=2hat(...

    Text Solution

    |

  9. Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) ...

    Text Solution

    |

  10. Find the vector projection of the vector : 2hat(i)-hat(j)+hat(k) ...

    Text Solution

    |

  11. Find lambda, when the projection of vec a=lambda hat i+ hat j+4 hat k...

    Text Solution

    |

  12. Show that the vector vec a=1/7(2 hat i+3 hat j+6 hat k),\ vec b=1/7(...

    Text Solution

    |

  13. If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k), t...

    Text Solution

    |

  14. If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k), t...

    Text Solution

    |

  15. Write the value of 'p' for which : vec(a)=3hat(i)+2hat(j)+9hat(k) and...

    Text Solution

    |

  16. Find the value of 'lambda' such that the vectors vec(a) and vec(b) a...

    Text Solution

    |

  17. Find the value of 'lambda' such that the vectors vec(a) and vec(b) a...

    Text Solution

    |

  18. If 2hat(i)+hat(j)-3hat(k) and m hat(i)+3hat(j)-hat(k) are perpendicu...

    Text Solution

    |

  19. Show that the projection of vec(b) on vec(a) ne vec(0) is : ((vec(...

    Text Solution

    |

  20. Show that |vec(a)|vec(b)-|vec(b)|vec(a), for any two non - zero vector...

    Text Solution

    |