Home
Class 12
MATHS
If 2hat(i)+hat(j)-3hat(k) and m hat(i)+...

If `2hat(i)+hat(j)-3hat(k)` and `m hat(i)+3hat(j)-hat(k)` are perpendicular to each other, then find 'm'. Also find the area of the rectangle having these two vectors as sides.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( m \) such that the vectors \( \mathbf{A} = 2\hat{i} + \hat{j} - 3\hat{k} \) and \( \mathbf{B} = m\hat{i} + 3\hat{j} - \hat{k} \) are perpendicular. We will also find the area of the rectangle formed by these two vectors. ### Step 1: Set up the dot product equation Since the vectors are perpendicular, their dot product must equal zero: \[ \mathbf{A} \cdot \mathbf{B} = 0 \] Calculating the dot product: \[ (2\hat{i} + \hat{j} - 3\hat{k}) \cdot (m\hat{i} + 3\hat{j} - \hat{k}) = 0 \] This expands to: \[ 2m + 1 \cdot 3 + (-3)(-1) = 0 \] Simplifying this gives: \[ 2m + 3 + 3 = 0 \] \[ 2m + 6 = 0 \] ### Step 2: Solve for \( m \) Now, we solve for \( m \): \[ 2m = -6 \implies m = -3 \] ### Step 3: Find the area of the rectangle The area of the rectangle formed by the two vectors is given by the magnitude of the cross product of the vectors \( \mathbf{A} \) and \( \mathbf{B} \): \[ \text{Area} = |\mathbf{A} \times \mathbf{B}| \] ### Step 4: Calculate the cross product The cross product \( \mathbf{A} \times \mathbf{B} \) can be calculated using the determinant of a matrix: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -3 \\ -3 & 3 & -1 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 1 & -3 \\ 3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -3 \\ -3 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ -3 & 3 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ 1 \cdot (-1) - (-3) \cdot 3 = -1 + 9 = 8 \] 2. For \( \hat{j} \): \[ 2 \cdot (-1) - (-3) \cdot (-3) = -2 - 9 = -11 \] 3. For \( \hat{k} \): \[ 2 \cdot 3 - 1 \cdot (-3) = 6 + 3 = 9 \] Putting it all together: \[ \mathbf{A} \times \mathbf{B} = 8\hat{i} + 11\hat{j} + 9\hat{k} \] ### Step 5: Find the magnitude of the cross product Now, we find the magnitude: \[ |\mathbf{A} \times \mathbf{B}| = \sqrt{8^2 + 11^2 + 9^2} = \sqrt{64 + 121 + 81} \] Calculating the sum: \[ = \sqrt{266} \] ### Final Result Thus, the value of \( m \) is \( -3 \) and the area of the rectangle is \( \sqrt{266} \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (I)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (d) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If two vectors 2hat(i)+3hat(j)-hat(k) and -4hat(i)-6hat(j)-lambda hat(k) are parallel to each other,then find the value of lambda

If vectors vec(a) = 3 hat(i) + hat(j) - 2 hat(k) and vec(b) = hat(i) + lambda(j) - 3 hat (k) are perpendicular to each other , find the value of lambda .

The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k) are :-

Find 'lambda' when the vectors : vec(a)=2hat(i)+lambda hat(j)+hat(k) and vec(b)=hat(i)-2hat(j)+3hat(k) are perpendicular to each other.

Show that the points, A, B and C having position vectors (2hat(i)-hat(j)+hat(k)), (hat(i)-3hat(j)-5hat(k)) and (3hat(i)-4hat(j)-4hat(k)) respectively are the vertices of a rightangled triangle. Also, find the remaining angles of the triangle.

A vector perpendicular to (hat(i)+hat(j)+hat(k)) and (hat(i)-hat(j)-hat(k)) is :-

If the vectors hat i+3hat j+4hat k,lambdahat i-4hat j+hat k ,are orthogonal to each other,then lambda=

If the vectors (hat(i) + hat(j) + hat(k)) and 3hat(i) form two sides of a triangle, then area of the triangle is :

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (e ) Short Answer Type Questions
  1. If either vector -> a= ->0 or -> b= ->0 , then -> adot -> b=0...

    Text Solution

    |

  2. Find the scalar projection of : vec(a)=7hat(i)+hat(j)-4hat(k) on v...

    Text Solution

    |

  3. Find the scalar projection of : vec(a)=3hat(i)-2hat(j)+hat(k) on ...

    Text Solution

    |

  4. Find the scalar projection of : vec(a)=2hat(i)+3hat(j)+2hat(k) on ...

    Text Solution

    |

  5. Find the scalar projection of : vec(a)=hat(i)-hat(j) on vec(b)=hat...

    Text Solution

    |

  6. Find the scalar projection of : vec(a)=hat(i)+3hat(j)+7hat(k) on ...

    Text Solution

    |

  7. Find the scalar projection of vec(b) on vec(a), when : vec(a)=2hat(...

    Text Solution

    |

  8. Find the scalar projection of vec(b) on vec(a), when : vec(a)=2hat(...

    Text Solution

    |

  9. Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) ...

    Text Solution

    |

  10. Find the vector projection of the vector : 2hat(i)-hat(j)+hat(k) ...

    Text Solution

    |

  11. Find lambda, when the projection of vec a=lambda hat i+ hat j+4 hat k...

    Text Solution

    |

  12. Show that the vector vec a=1/7(2 hat i+3 hat j+6 hat k),\ vec b=1/7(...

    Text Solution

    |

  13. If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k), t...

    Text Solution

    |

  14. If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k), t...

    Text Solution

    |

  15. Write the value of 'p' for which : vec(a)=3hat(i)+2hat(j)+9hat(k) and...

    Text Solution

    |

  16. Find the value of 'lambda' such that the vectors vec(a) and vec(b) a...

    Text Solution

    |

  17. Find the value of 'lambda' such that the vectors vec(a) and vec(b) a...

    Text Solution

    |

  18. If 2hat(i)+hat(j)-3hat(k) and m hat(i)+3hat(j)-hat(k) are perpendicu...

    Text Solution

    |

  19. Show that the projection of vec(b) on vec(a) ne vec(0) is : ((vec(...

    Text Solution

    |

  20. Show that |vec(a)|vec(b)-|vec(b)|vec(a), for any two non - zero vector...

    Text Solution

    |