Home
Class 12
MATHS
If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b...

If `vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c )=2hat(i)+8hat(j)`, then find `vec(a).(vec(b)xx vec(c ))` and `(vec(b)xx vec(c )).vec(a)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate two expressions: \(\vec{a} \cdot (\vec{b} \times \vec{c})\) and \((\vec{b} \times \vec{c}) \cdot \vec{a}\). Given: \[ \vec{a} = 7\hat{i} - 2\hat{j} + 3\hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + 2\hat{k} \] \[ \vec{c} = 2\hat{i} + 8\hat{j} \] ### Step 1: Calculate \(\vec{b} \times \vec{c}\) To find \(\vec{b} \times \vec{c}\), we can use the determinant of a matrix formed by the unit vectors \(\hat{i}, \hat{j}, \hat{k}\) and the components of \(\vec{b}\) and \(\vec{c}\): \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 2 & 8 & 0 \end{vmatrix} \] Calculating the determinant, we expand it as follows: \[ \vec{b} \times \vec{c} = \hat{i} \begin{vmatrix} -1 & 2 \\ 8 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ 2 & 8 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} -1 & 2 \\ 8 & 0 \end{vmatrix} = (-1)(0) - (2)(8) = -16\) 2. \(\begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} = (1)(0) - (2)(2) = -4\) 3. \(\begin{vmatrix} 1 & -1 \\ 2 & 8 \end{vmatrix} = (1)(8) - (-1)(2) = 8 + 2 = 10\) Putting it all together: \[ \vec{b} \times \vec{c} = -16\hat{i} + 4\hat{j} + 10\hat{k} \] ### Step 2: Calculate \(\vec{a} \cdot (\vec{b} \times \vec{c})\) Now we find \(\vec{a} \cdot (\vec{b} \times \vec{c})\): \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = (7\hat{i} - 2\hat{j} + 3\hat{k}) \cdot (-16\hat{i} + 4\hat{j} + 10\hat{k}) \] Calculating the dot product: \[ = 7 \cdot (-16) + (-2) \cdot 4 + 3 \cdot 10 \] \[ = -112 - 8 + 30 \] \[ = -90 \] ### Step 3: Calculate \((\vec{b} \times \vec{c}) \cdot \vec{a}\) Since the dot product is commutative, we have: \[ (\vec{b} \times \vec{c}) \cdot \vec{a} = \vec{a} \cdot (\vec{b} \times \vec{c}) = -90 \] ### Final Answers: 1. \(\vec{a} \cdot (\vec{b} \times \vec{c}) = -90\) 2. \((\vec{b} \times \vec{c}) \cdot \vec{a} = -90\)
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

If vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(i)-hat(j)+hat(k) and vec(c)=hat(i)+hat(j)-hat(k) , then what is vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b)) equal to?

If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + hat(k) and vec(c )= hat(i) + hat(j) - hat(k) , then what is vec(a) xx (vec(b)+ vec(c )) + vec(b) xx (vec(c ) + vec(a)) + vec(c ) xx (vec(a) + vec(b)) is equal to ?

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

If vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b)=(hat(i)-3hat(j)-5hat(k)) and vec(c)=(3hat(i)-4hat(j)-hat(k)) , find [vec(a)vec(b)vec(c)] and interpret the result.

If vec(a) = 3 hat(i) + 2 hat(k) , vec(b) = 3hat(j) - hat(k) and vec(c ) = hat(i) + hat(j) + hat(k) . Find ( vec(a) xx vec(b)). vec(c ) .

Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) + hat(k), vec(c) = 3hat(i) + 2hat(j) + hat(k) and vec(d) = 3hat(i) - hat(j) - 2hat(k) , then . If vec(a) xx (vec(b) xx vec(c)) = pvec(a) + qvec(b) + rvec(c) , then find value of p,q are r.

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

If vec(a)=2hat(i)-3hat(j)-hat(k), vec(b)=hat(i)+4hat(j)-2hat(k) , then what is (vec(a)+vec(b))xx(vec(a)-vec(b)) equal to ?

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (j) Short Answer Type Questions
  1. Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), v...

    Text Solution

    |

  2. Show that if vec(a)+vec(b), vec(b)+vec(c ), vec(c )+vec(a) are coplana...

    Text Solution

    |

  3. If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c...

    Text Solution

    |

  4. Show that the vectors vec(a), vec(b), vec(c) are coplanar, when (i) ...

    Text Solution

    |

  5. Show that the following vectors are coplanar : -2hat(i)-2hat(j)+4...

    Text Solution

    |

  6. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  7. For what value of 'lambda' are the following vectors coplanar ? v...

    Text Solution

    |

  8. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  9. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  10. Show that the four points A, B, C and D with position vectors 4hat(i)+...

    Text Solution

    |

  11. Show that the four points with position vectors4 hat i+8 hat j+12 hat ...

    Text Solution

    |

  12. Find lambda for which the points A(3,\ 2,\ 1),\ B(4,\ lambda,\ 5),\ C(...

    Text Solution

    |

  13. Find the value of 'x' for which the four points : A(x, -1, -1), B(4, 5...

    Text Solution

    |

  14. Find the value of 'x' such that four points with position vectors : A(...

    Text Solution

    |

  15. Show that the four points having position vectors 6 hat i-7 hat j ,...

    Text Solution

    |

  16. Find the volume of the parallelopiped whose sides are given by the vec...

    Text Solution

    |

  17. Find the volume of the parallelopiped with coteminous edges AB, AC an...

    Text Solution

    |