Home
Class 12
MATHS
For what value of 'lambda' are the follo...

For what value of `'lambda'` are the following vectors coplanar ?
`vec(a)=hat(i)+3hat(j)+hat(k), vec(b)=2hat(i)-hat(j)-hat(k)` and `vec(c )=lambda hat(j)+3hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) for which the vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are coplanar, we need to use the condition that the scalar triple product of these vectors is equal to zero. This can be represented using the determinant of a matrix formed by the components of the vectors. ### Step-by-Step Solution: 1. **Identify the Vectors:** - \( \vec{a} = \hat{i} + 3\hat{j} + \hat{k} \) - \( \vec{b} = 2\hat{i} - \hat{j} - \hat{k} \) - \( \vec{c} = \lambda \hat{j} + 3\hat{k} \) 2. **Write the Vectors in Component Form:** - \( \vec{a} = (1, 3, 1) \) - \( \vec{b} = (2, -1, -1) \) - \( \vec{c} = (0, \lambda, 3) \) 3. **Set Up the Determinant:** The condition for coplanarity is given by the determinant: \[ \begin{vmatrix} 1 & 3 & 1 \\ 2 & -1 & -1 \\ 0 & \lambda & 3 \end{vmatrix} = 0 \] 4. **Calculate the Determinant:** Expanding the determinant using the first row: \[ = 1 \cdot \begin{vmatrix} -1 & -1 \\ \lambda & 3 \end{vmatrix} - 3 \cdot \begin{vmatrix} 2 & -1 \\ 0 & 3 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & -1 \\ 0 & \lambda \end{vmatrix} \] Now calculate each of the 2x2 determinants: - First determinant: \[ \begin{vmatrix} -1 & -1 \\ \lambda & 3 \end{vmatrix} = (-1)(3) - (-1)(\lambda) = -3 + \lambda = \lambda - 3 \] - Second determinant: \[ \begin{vmatrix} 2 & -1 \\ 0 & 3 \end{vmatrix} = (2)(3) - (-1)(0) = 6 \] - Third determinant: \[ \begin{vmatrix} 2 & -1 \\ 0 & \lambda \end{vmatrix} = (2)(\lambda) - (-1)(0) = 2\lambda \] 5. **Combine the Results:** Now substituting back into the determinant: \[ 1(\lambda - 3) - 3(6) + 1(2\lambda) = 0 \] Simplifying: \[ \lambda - 3 - 18 + 2\lambda = 0 \] \[ 3\lambda - 21 = 0 \] 6. **Solve for \( \lambda \):** \[ 3\lambda = 21 \implies \lambda = 7 \] ### Final Answer: The value of \( \lambda \) for which the vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are coplanar is \( \lambda = 7 \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

For what value of 'lambda' are the following vectors coplanar ? vec(a)=hat(i)+3hat(j)+hat(k), vec(b)=2hat(i)-hat(j)-hat(k) and vec(c )=lambda hat(i)+7hat(j)+3hat(k) .

For what value of 'lambda' are the following vectors coplanar ? vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 3hat(i)+hat(j)+2hat(k) and vec(c )=hat(i)+lambda hat(j)-3hat(k)

For what value of 'lambda' are the following vectors coplanar ? vec(a)=2hat(i)-4hat(j)+5hat(k), vec(b)=hat(i)-lambda hat(j)+hat(k) and vec(c )= 3hat(i)+2hat(j)-5hat(k) .

Find the value of lambda so that the vectors vec(a)=2hat(i)-3hat(j)+hat(k),vec(b)=hat(i)+2hat(j)-3hat(k) a nd vec(c)=hat(j)+lambda hat(k) are coplanar.

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

Find the value of lambda so that the following vectors are coplanar: vec a=hat i-hat j+hat k,vec b=2hat i+hat j-hat k,vec c=lambdahat i-hat j+lambdahat k

Find the value of lambda so that the following vectorts are coplanar: vec a=hat i-hat j+hat k,vec b=2hat i+hat j-hat k,vec c=lambdahat i-hat j+lambdahat k

Find the value of lambda so that the following vectorts are coplanar: vec a=2hat i-hat j+hat k,vec b=hat i+2hat j-3hat k,vec c=lambdahat i+lambdahat j+5hat k

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (j) Short Answer Type Questions
  1. Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), v...

    Text Solution

    |

  2. Show that if vec(a)+vec(b), vec(b)+vec(c ), vec(c )+vec(a) are coplana...

    Text Solution

    |

  3. If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c...

    Text Solution

    |

  4. Show that the vectors vec(a), vec(b), vec(c) are coplanar, when (i) ...

    Text Solution

    |

  5. Show that the following vectors are coplanar : -2hat(i)-2hat(j)+4...

    Text Solution

    |

  6. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  7. For what value of 'lambda' are the following vectors coplanar ? v...

    Text Solution

    |

  8. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  9. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  10. Show that the four points A, B, C and D with position vectors 4hat(i)+...

    Text Solution

    |

  11. Show that the four points with position vectors4 hat i+8 hat j+12 hat ...

    Text Solution

    |

  12. Find lambda for which the points A(3,\ 2,\ 1),\ B(4,\ lambda,\ 5),\ C(...

    Text Solution

    |

  13. Find the value of 'x' for which the four points : A(x, -1, -1), B(4, 5...

    Text Solution

    |

  14. Find the value of 'x' such that four points with position vectors : A(...

    Text Solution

    |

  15. Show that the four points having position vectors 6 hat i-7 hat j ,...

    Text Solution

    |

  16. Find the volume of the parallelopiped whose sides are given by the vec...

    Text Solution

    |

  17. Find the volume of the parallelopiped with coteminous edges AB, AC an...

    Text Solution

    |