Home
Class 12
MATHS
For what value of 'lambda' are the follo...

For what value of `'lambda'` are the following vectors coplanar ?
`vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 3hat(i)+hat(j)+2hat(k)` and `vec(c )=hat(i)+lambda hat(j)-3hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \(\lambda\) for which the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar, we can use the condition that the scalar triple product of the vectors must be zero. This can be represented using the determinant of a matrix formed by the coefficients of the vectors. ### Step-by-Step Solution: 1. **Identify the vectors**: \[ \vec{a} = \hat{i} - \hat{j} + \hat{k} \quad \Rightarrow \quad (1, -1, 1) \] \[ \vec{b} = 3\hat{i} + \hat{j} + 2\hat{k} \quad \Rightarrow \quad (3, 1, 2) \] \[ \vec{c} = \hat{i} + \lambda \hat{j} - 3\hat{k} \quad \Rightarrow \quad (1, \lambda, -3) \] 2. **Set up the determinant**: The vectors are coplanar if the determinant of the matrix formed by their coefficients is zero: \[ \begin{vmatrix} 1 & -1 & 1 \\ 3 & 1 & 2 \\ 1 & \lambda & -3 \end{vmatrix} = 0 \] 3. **Calculate the determinant**: Expanding the determinant: \[ = 1 \cdot \begin{vmatrix} 1 & 2 \\ \lambda & -3 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 3 & 2 \\ 1 & -3 \end{vmatrix} + 1 \cdot \begin{vmatrix} 3 & 1 \\ 1 & \lambda \end{vmatrix} \] Calculating each of the 2x2 determinants: - First determinant: \[ = 1 \cdot (-3 - 2\lambda) = -3 - 2\lambda \] - Second determinant: \[ = 3 \cdot (-3) - 2 \cdot 1 = -9 - 2 = -11 \quad \Rightarrow \quad \text{(since we have a negative sign in front)} \quad = +11 \] - Third determinant: \[ = 3\lambda - 1 \] 4. **Combine the results**: Putting it all together: \[ -3 - 2\lambda + 11 + 3\lambda - 1 = 0 \] Simplifying: \[ (3\lambda - 2\lambda) + (-3 + 11 - 1) = 0 \] \[ \lambda + 7 = 0 \] 5. **Solve for \(\lambda\)**: \[ \lambda = -7 \] ### Final Answer: The value of \(\lambda\) for which the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar is \(\lambda = -7\).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

For what value of 'lambda' are the following vectors coplanar ? vec(a)=hat(i)+3hat(j)+hat(k), vec(b)=2hat(i)-hat(j)-hat(k) and vec(c )=lambda hat(j)+3hat(k)

For what value of 'lambda' are the following vectors coplanar ? vec(a)=2hat(i)-4hat(j)+5hat(k), vec(b)=hat(i)-lambda hat(j)+hat(k) and vec(c )= 3hat(i)+2hat(j)-5hat(k) .

For what value of 'lambda' are the following vectors coplanar ? vec(a)=hat(i)+3hat(j)+hat(k), vec(b)=2hat(i)-hat(j)-hat(k) and vec(c )=lambda hat(i)+7hat(j)+3hat(k) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)+2hat(k) .

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

Find the value of lambda so that the vectors vec(a)=2hat(i)-3hat(j)+hat(k),vec(b)=hat(i)+2hat(j)-3hat(k) a nd vec(c)=hat(j)+lambda hat(k) are coplanar.

Find the value of lambda for which the vectors vec(a), vec(b), vec(c) are coplanar, where (i) vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b) = (hat(i)+2hat(j)+3hat(k) ) and vec(c)=(3 hat(i)+lambda hat(j) + 5 hat (k)) (ii) vec(a)lambda hat(i)-10 hat(j)-5k^(2), vec(b) =-7hat(i)-5hat(j) and vec(c)= hat(i)--4hat(j)-3hat(k) (iii) vec(a)=hat(i)-hat(j)+hat(k), vec(b)= 2hat( i) + hat(j)-hat(k) and vec(c)= lambda hat(i) - hat(j) + lambda hat(k)

Find 'lambda' if the vectors : hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k) and hat(i)+lambda hat(j)-3hat(k) are coplanar.

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (j) Short Answer Type Questions
  1. Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), v...

    Text Solution

    |

  2. Show that if vec(a)+vec(b), vec(b)+vec(c ), vec(c )+vec(a) are coplana...

    Text Solution

    |

  3. If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c...

    Text Solution

    |

  4. Show that the vectors vec(a), vec(b), vec(c) are coplanar, when (i) ...

    Text Solution

    |

  5. Show that the following vectors are coplanar : -2hat(i)-2hat(j)+4...

    Text Solution

    |

  6. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  7. For what value of 'lambda' are the following vectors coplanar ? v...

    Text Solution

    |

  8. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  9. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  10. Show that the four points A, B, C and D with position vectors 4hat(i)+...

    Text Solution

    |

  11. Show that the four points with position vectors4 hat i+8 hat j+12 hat ...

    Text Solution

    |

  12. Find lambda for which the points A(3,\ 2,\ 1),\ B(4,\ lambda,\ 5),\ C(...

    Text Solution

    |

  13. Find the value of 'x' for which the four points : A(x, -1, -1), B(4, 5...

    Text Solution

    |

  14. Find the value of 'x' such that four points with position vectors : A(...

    Text Solution

    |

  15. Show that the four points having position vectors 6 hat i-7 hat j ,...

    Text Solution

    |

  16. Find the volume of the parallelopiped whose sides are given by the vec...

    Text Solution

    |

  17. Find the volume of the parallelopiped with coteminous edges AB, AC an...

    Text Solution

    |