Home
Class 12
MATHS
For what value of 'lambda' are the follo...

For what value of `'lambda'` are the following vectors coplanar ?
`vec(a)=2hat(i)-4hat(j)+5hat(k), vec(b)=hat(i)-lambda hat(j)+hat(k)` and `vec(c )= 3hat(i)+2hat(j)-5hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) for which the vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are coplanar, we need to calculate the scalar triple product of these vectors and set it equal to zero. The vectors are given as: \[ \vec{a} = 2\hat{i} - 4\hat{j} + 5\hat{k} \] \[ \vec{b} = \hat{i} - \lambda \hat{j} + \hat{k} \] \[ \vec{c} = 3\hat{i} + 2\hat{j} - 5\hat{k} \] ### Step 1: Set up the determinant The scalar triple product can be expressed as the determinant of a matrix formed by the coefficients of the vectors: \[ \begin{vmatrix} 2 & -4 & 5 \\ 1 & -\lambda & 1 \\ 3 & 2 & -5 \end{vmatrix} \] ### Step 2: Calculate the determinant We will expand this determinant using the first row: \[ = 2 \begin{vmatrix} -\lambda & 1 \\ 2 & -5 \end{vmatrix} - (-4) \begin{vmatrix} 1 & 1 \\ 3 & -5 \end{vmatrix} + 5 \begin{vmatrix} 1 & -\lambda \\ 3 & 2 \end{vmatrix} \] ### Step 3: Calculate each of the 2x2 determinants 1. For the first determinant: \[ \begin{vmatrix} -\lambda & 1 \\ 2 & -5 \end{vmatrix} = (-\lambda)(-5) - (1)(2) = 5\lambda - 2 \] 2. For the second determinant: \[ \begin{vmatrix} 1 & 1 \\ 3 & -5 \end{vmatrix} = (1)(-5) - (1)(3) = -5 - 3 = -8 \] 3. For the third determinant: \[ \begin{vmatrix} 1 & -\lambda \\ 3 & 2 \end{vmatrix} = (1)(2) - (-\lambda)(3) = 2 + 3\lambda \] ### Step 4: Substitute back into the determinant expression Now substituting back into the determinant expression: \[ = 2(5\lambda - 2) + 4(-8) + 5(2 + 3\lambda) \] \[ = 10\lambda - 4 - 32 + 10 + 15\lambda \] \[ = 25\lambda - 26 \] ### Step 5: Set the determinant equal to zero For the vectors to be coplanar, we set the determinant equal to zero: \[ 25\lambda - 26 = 0 \] ### Step 6: Solve for \( \lambda \) Solving for \( \lambda \): \[ 25\lambda = 26 \] \[ \lambda = \frac{26}{25} \] ### Final Answer Thus, the value of \( \lambda \) for which the vectors are coplanar is: \[ \lambda = \frac{26}{25} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

For what value of 'lambda' are the following vectors coplanar ? vec(a)=hat(i)+3hat(j)+hat(k), vec(b)=2hat(i)-hat(j)-hat(k) and vec(c )=lambda hat(j)+3hat(k)

For what value of 'lambda' are the following vectors coplanar ? vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 3hat(i)+hat(j)+2hat(k) and vec(c )=hat(i)+lambda hat(j)-3hat(k)

For what value of 'lambda' are the following vectors coplanar ? vec(a)=hat(i)+3hat(j)+hat(k), vec(b)=2hat(i)-hat(j)-hat(k) and vec(c )=lambda hat(i)+7hat(j)+3hat(k) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The three vector vec(A) = 3hat(i)-2hat(j)+hat(k), vec(B)= hat(i)-3hat(j)+5hat(k) and vec(C )= 2hat(i)+hat(j)-4hat(k) from

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Find the value of lambda so that the vectors vec(a)=2hat(i)-3hat(j)+hat(k),vec(b)=hat(i)+2hat(j)-3hat(k) a nd vec(c)=hat(j)+lambda hat(k) are coplanar.

Find the value of lambda for which the vectors vec(a), vec(b), vec(c) are coplanar, where (i) vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b) = (hat(i)+2hat(j)+3hat(k) ) and vec(c)=(3 hat(i)+lambda hat(j) + 5 hat (k)) (ii) vec(a)lambda hat(i)-10 hat(j)-5k^(2), vec(b) =-7hat(i)-5hat(j) and vec(c)= hat(i)--4hat(j)-3hat(k) (iii) vec(a)=hat(i)-hat(j)+hat(k), vec(b)= 2hat( i) + hat(j)-hat(k) and vec(c)= lambda hat(i) - hat(j) + lambda hat(k)

Find the value of lambda so that the following vectorts are coplanar: vec a=hat i+2hat j-3hat k,vec b=3hat i+lambdahat j+hat k,vec c=hat i+2hat j+2hat k

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (j) Short Answer Type Questions
  1. Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), v...

    Text Solution

    |

  2. Show that if vec(a)+vec(b), vec(b)+vec(c ), vec(c )+vec(a) are coplana...

    Text Solution

    |

  3. If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c...

    Text Solution

    |

  4. Show that the vectors vec(a), vec(b), vec(c) are coplanar, when (i) ...

    Text Solution

    |

  5. Show that the following vectors are coplanar : -2hat(i)-2hat(j)+4...

    Text Solution

    |

  6. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  7. For what value of 'lambda' are the following vectors coplanar ? v...

    Text Solution

    |

  8. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  9. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  10. Show that the four points A, B, C and D with position vectors 4hat(i)+...

    Text Solution

    |

  11. Show that the four points with position vectors4 hat i+8 hat j+12 hat ...

    Text Solution

    |

  12. Find lambda for which the points A(3,\ 2,\ 1),\ B(4,\ lambda,\ 5),\ C(...

    Text Solution

    |

  13. Find the value of 'x' for which the four points : A(x, -1, -1), B(4, 5...

    Text Solution

    |

  14. Find the value of 'x' such that four points with position vectors : A(...

    Text Solution

    |

  15. Show that the four points having position vectors 6 hat i-7 hat j ,...

    Text Solution

    |

  16. Find the volume of the parallelopiped whose sides are given by the vec...

    Text Solution

    |

  17. Find the volume of the parallelopiped with coteminous edges AB, AC an...

    Text Solution

    |