Home
Class 12
MATHS
Find the value of 'x' such that four poi...

Find the value of 'x' such that four points with position vectors : `A(3hat(i)-2hat(j)+hat(k)), B(4hat(i)+x hat(j)+5hat(k)), C(4hat(i)+2hat(j)-2hat(k))` and `D(6hat(i)+5hat(j)-hat(k))` are coplanar.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of 'x' such that the points A, B, C, and D with given position vectors are coplanar, we can use the scalar triple product condition. The points are coplanar if the scalar triple product of the vectors AB, AC, and AD is zero. ### Step-by-Step Solution: 1. **Identify the Position Vectors**: - \( \vec{A} = 3\hat{i} - 2\hat{j} + \hat{k} \) - \( \vec{B} = 4\hat{i} + x\hat{j} + 5\hat{k} \) - \( \vec{C} = 4\hat{i} + 2\hat{j} - 2\hat{k} \) - \( \vec{D} = 6\hat{i} + 5\hat{j} - \hat{k} \) 2. **Find the Vectors AB, AC, and AD**: - **Vector AB**: \[ \vec{AB} = \vec{B} - \vec{A} = (4\hat{i} + x\hat{j} + 5\hat{k}) - (3\hat{i} - 2\hat{j} + \hat{k}) = (4 - 3)\hat{i} + (x + 2)\hat{j} + (5 - 1)\hat{k} = \hat{i} + (x + 2)\hat{j} + 4\hat{k} \] - **Vector AC**: \[ \vec{AC} = \vec{C} - \vec{A} = (4\hat{i} + 2\hat{j} - 2\hat{k}) - (3\hat{i} - 2\hat{j} + \hat{k}) = (4 - 3)\hat{i} + (2 + 2)\hat{j} + (-2 - 1)\hat{k} = \hat{i} + 4\hat{j} - 3\hat{k} \] - **Vector AD**: \[ \vec{AD} = \vec{D} - \vec{A} = (6\hat{i} + 5\hat{j} - \hat{k}) - (3\hat{i} - 2\hat{j} + \hat{k}) = (6 - 3)\hat{i} + (5 + 2)\hat{j} + (-1 - 1)\hat{k} = 3\hat{i} + 7\hat{j} - 2\hat{k} \] 3. **Set Up the Scalar Triple Product**: The scalar triple product can be calculated using the determinant: \[ \left| \begin{array}{ccc} 1 & x + 2 & 4 \\ 1 & 4 & -3 \\ 3 & 7 & -2 \end{array} \right| = 0 \] 4. **Calculate the Determinant**: Expanding the determinant: \[ = 1 \left| \begin{array}{cc} 4 & -3 \\ 7 & -2 \end{array} \right| - (x + 2) \left| \begin{array}{cc} 1 & -3 \\ 3 & -2 \end{array} \right| + 4 \left| \begin{array}{cc} 1 & 4 \\ 3 & 7 \end{array} \right| \] Calculating each of these 2x2 determinants: \[ = 1(4 \cdot -2 - (-3) \cdot 7) - (x + 2)(1 \cdot -2 - (-3) \cdot 3) + 4(1 \cdot 7 - 4 \cdot 3) \] \[ = 1(-8 + 21) - (x + 2)(-2 + 9) + 4(7 - 12) \] \[ = 1(13) - (x + 2)(7) + 4(-5) \] \[ = 13 - 7(x + 2) - 20 \] \[ = 13 - 7x - 14 - 20 = -7x - 21 \] 5. **Set the Determinant to Zero**: \[ -7x - 21 = 0 \] \[ -7x = 21 \] \[ x = -3 \] ### Final Answer: The value of \( x \) such that points A, B, C, and D are coplanar is \( x = -3 \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the value of lambda so that the four points with position vectors (-6hat(i)+3hat(j)+2hat(k)), (3 hat(i)+lambda hat(j)+4hat(k)), (5hat(i)+7hat(j)+3hat(k))and (-13hat(i)+17hat(j)-2hat(k)) are coplanar.

Show that the four points A, B, C and D with position vectors 4hat(i)+5hat(j)+hat(k), -(hat(j)+hat(k)),3hat(i)+9hat(j)+4hat(k) and 4(-hat(i)+hat(j)+hat(k)) respectively are coplanar.

Find the value of lambda for which the four points with position vectors (-hat(j)+hat(k)), (2hat(i)-hat(j)-hat(k)), (hat(i)+lambda hat(j)+hat(k))and (3hat(j)+3hat(k)) are coplanar.

If [[hat(i)+4hat(j)+6hat(k), 2hat(i)+ahat(j)+3hat(k), hat(i)+2hat(j)-3hat(k)]]=0 then a=

Show that the following vectors are coplanar : 3hat(i)-2hat(j)+4hat(k), 6hat(i)+3hat(j)+2hat(k), 5hat(i)+7hat(j)+3hat(k) and 2hat(i)+2hat(j)+5hat(k) .

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

show that the points whose position vectors are (-2hat(i) +3hat(j) +5hat(k)) (hat(i)+2hat(j)+3hat(k)) " and " (7hat(i) -hat(k)) are collinear.

Show that the following vectors are coplanar : -2hat(i)-2hat(j)+4hat(k), -2hat(i)+4hat(j)-2hat(k), 4hat(i)-2hat(k) and hat(i)-hat(j)+hat(k) .

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (j) Short Answer Type Questions
  1. Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), v...

    Text Solution

    |

  2. Show that if vec(a)+vec(b), vec(b)+vec(c ), vec(c )+vec(a) are coplana...

    Text Solution

    |

  3. If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c...

    Text Solution

    |

  4. Show that the vectors vec(a), vec(b), vec(c) are coplanar, when (i) ...

    Text Solution

    |

  5. Show that the following vectors are coplanar : -2hat(i)-2hat(j)+4...

    Text Solution

    |

  6. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  7. For what value of 'lambda' are the following vectors coplanar ? v...

    Text Solution

    |

  8. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  9. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  10. Show that the four points A, B, C and D with position vectors 4hat(i)+...

    Text Solution

    |

  11. Show that the four points with position vectors4 hat i+8 hat j+12 hat ...

    Text Solution

    |

  12. Find lambda for which the points A(3,\ 2,\ 1),\ B(4,\ lambda,\ 5),\ C(...

    Text Solution

    |

  13. Find the value of 'x' for which the four points : A(x, -1, -1), B(4, 5...

    Text Solution

    |

  14. Find the value of 'x' such that four points with position vectors : A(...

    Text Solution

    |

  15. Show that the four points having position vectors 6 hat i-7 hat j ,...

    Text Solution

    |

  16. Find the volume of the parallelopiped whose sides are given by the vec...

    Text Solution

    |

  17. Find the volume of the parallelopiped with coteminous edges AB, AC an...

    Text Solution

    |