Home
Class 12
MATHS
Find the volume of the parallelopiped wh...

Find the volume of the parallelopiped whose sides are given by the vectors :
(i) `11hat(i), 2hat(j), 13 hat(k)`
(ii) `3hat(i)+4hat(j), 2hat(i)+3hat(j)+4hat(k), 5hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the parallelepiped defined by the given vectors, we can use the scalar triple product, which can be computed using the determinant of a 3x3 matrix formed by the vectors. Let's solve both parts step by step. ### Part (i) Given vectors: - \( \mathbf{A} = 11\hat{i} \) - \( \mathbf{B} = 2\hat{j} \) - \( \mathbf{C} = 13\hat{k} \) 1. **Set up the determinant**: The volume \( V \) of the parallelepiped can be calculated using the determinant: \[ V = \left| \begin{array}{ccc} 11 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 13 \end{array} \right| \] 2. **Calculate the determinant**: The determinant of a diagonal matrix is the product of its diagonal elements: \[ V = 11 \times 2 \times 13 = 286 \] 3. **Final result**: The volume of the parallelepiped is \( 286 \) cubic units. ### Part (ii) Given vectors: - \( \mathbf{A} = 3\hat{i} + 4\hat{j} \) - \( \mathbf{B} = 2\hat{i} + 3\hat{j} + 4\hat{k} \) - \( \mathbf{C} = 5\hat{k} \) 1. **Set up the determinant**: The volume \( V \) can be calculated using the determinant: \[ V = \left| \begin{array}{ccc} 3 & 4 & 0 \\ 2 & 3 & 4 \\ 0 & 0 & 5 \end{array} \right| \] 2. **Calculate the determinant**: We can expand the determinant using the first row: \[ V = 3 \left| \begin{array}{cc} 3 & 4 \\ 0 & 5 \end{array} \right| - 4 \left| \begin{array}{cc} 2 & 4 \\ 0 & 5 \end{array} \right| + 0 \] Calculating the 2x2 determinants: \[ \left| \begin{array}{cc} 3 & 4 \\ 0 & 5 \end{array} \right| = 3 \cdot 5 - 4 \cdot 0 = 15 \] \[ \left| \begin{array}{cc} 2 & 4 \\ 0 & 5 \end{array} \right| = 2 \cdot 5 - 4 \cdot 0 = 10 \] Substituting back: \[ V = 3 \cdot 15 - 4 \cdot 10 = 45 - 40 = 5 \] 3. **Final result**: The volume of the parallelepiped is \( 5 \) cubic units. ### Summary of Results - Volume of the first parallelepiped: \( 286 \) cubic units. - Volume of the second parallelepiped: \( 5 \) cubic units.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the volume of the parallelopiped whose coterminus edges are given by vectors 2hat(i)+3hat(j)-4hat(k),5hat(i)+7hat(j)+5hat(k)and4hat(i)+5hat(j)-2hat(k) .

The volume of the paralleloP1ped with co-terminous edges given by the vectors 3hat(i)+5hat(j), 4hat(i)+2hat(j)-3hat(k), 3hat(i)+hat(j)+4hat(k) is

The volume of the parallelopiped whose sides are given by overset(to)(OA)= 2hat(i) -3hat(j) , overset(to)(OB) +hat(i) + hat(j) -hat(k) overset(to)(OC)= 3hat(i) -hat(k) , is

The volume of the paralleloP1ped with co-terminous edges given by the vectors 3hat(i)-hat(j)+4hat(k), 6hat(i)+2hat(j)-5hat(k), 2hat(i)+hat(j)-3hat(k) is

Find the volume of the parallelepiped whose edges are represented by the vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)), vec(b)=(hat(i)+2hat(j)-hat(k)) and vec(c)=(3hat(i)-hat(j)+2hat(k)) .

Find the volume of the parallelopiped whose coterminus edges are : (1) 3hat(i)+5hat(k),4hat(i)+2hat(j)-3hat(k),3hat(i)+hat(j)+4hat(k) (2) bar(a)=hat(i)+hat(j),bar(b)=hat(j)+hat(k),bar(c)=hat(k)+hat(i) (3) 2hat(i)+5hat(j)-4hat(k),5hat(i)+7hat(j)+5hat(k),4hat(i)+5hat(j)-2hat(k) .

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k vec a=11 hat i , vec b=2 hat j- hat k , vec c=13 hat k vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2hat i+3hat j+4hat k,vec b=hat i+hat i+2hat j-hat k,vec c=3hat i-hat j+2hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2hat i-3hat j+4hat k,vec b=hat i+hat i+2hat j-hat k,vec c=3hat i-hat j-2hat k

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (j) Short Answer Type Questions
  1. Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), v...

    Text Solution

    |

  2. Show that if vec(a)+vec(b), vec(b)+vec(c ), vec(c )+vec(a) are coplana...

    Text Solution

    |

  3. If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c...

    Text Solution

    |

  4. Show that the vectors vec(a), vec(b), vec(c) are coplanar, when (i) ...

    Text Solution

    |

  5. Show that the following vectors are coplanar : -2hat(i)-2hat(j)+4...

    Text Solution

    |

  6. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  7. For what value of 'lambda' are the following vectors coplanar ? v...

    Text Solution

    |

  8. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  9. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  10. Show that the four points A, B, C and D with position vectors 4hat(i)+...

    Text Solution

    |

  11. Show that the four points with position vectors4 hat i+8 hat j+12 hat ...

    Text Solution

    |

  12. Find lambda for which the points A(3,\ 2,\ 1),\ B(4,\ lambda,\ 5),\ C(...

    Text Solution

    |

  13. Find the value of 'x' for which the four points : A(x, -1, -1), B(4, 5...

    Text Solution

    |

  14. Find the value of 'x' such that four points with position vectors : A(...

    Text Solution

    |

  15. Show that the four points having position vectors 6 hat i-7 hat j ,...

    Text Solution

    |

  16. Find the volume of the parallelopiped whose sides are given by the vec...

    Text Solution

    |

  17. Find the volume of the parallelopiped with coteminous edges AB, AC an...

    Text Solution

    |