Home
Class 12
MATHS
Find the volume of the parallelopiped wi...

Find the volume of the parallelopiped with coteminous edges AB, AC and AD, where `A-= (3, 2, 1), B-= (4, 2, 1), C -= (0, 1, 4)` and `D-= (0,0,7)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the parallelepiped with coterminous edges \( \vec{AB}, \vec{AC}, \) and \( \vec{AD} \), we will follow these steps: ### Step 1: Find the vectors \( \vec{AB}, \vec{AC}, \) and \( \vec{AD} \) 1. **Calculate \( \vec{AB} \)**: \[ \vec{AB} = \vec{B} - \vec{A} = (4, 2, 1) - (3, 2, 1) = (4 - 3, 2 - 2, 1 - 1) = (1, 0, 0) \] 2. **Calculate \( \vec{AC} \)**: \[ \vec{AC} = \vec{C} - \vec{A} = (0, 1, 4) - (3, 2, 1) = (0 - 3, 1 - 2, 4 - 1) = (-3, -1, 3) \] 3. **Calculate \( \vec{AD} \)**: \[ \vec{AD} = \vec{D} - \vec{A} = (0, 0, 7) - (3, 2, 1) = (0 - 3, 0 - 2, 7 - 1) = (-3, -2, 6) \] ### Step 2: Set up the determinant for the volume The volume \( V \) of the parallelepiped can be calculated using the scalar triple product, which is given by the determinant of the matrix formed by the vectors \( \vec{AB}, \vec{AC}, \) and \( \vec{AD} \): \[ V = |\vec{AB} \cdot (\vec{AC} \times \vec{AD})| = \left| \begin{vmatrix} 1 & 0 & 0 \\ -3 & -1 & 3 \\ -3 & -2 & 6 \end{vmatrix} \right| \] ### Step 3: Calculate the determinant 1. **Calculate the determinant**: \[ \begin{vmatrix} 1 & 0 & 0 \\ -3 & -1 & 3 \\ -3 & -2 & 6 \end{vmatrix} \] Expanding the determinant along the first row: \[ = 1 \cdot \begin{vmatrix} -1 & 3 \\ -2 & 6 \end{vmatrix} - 0 + 0 \] Now calculate the 2x2 determinant: \[ = 1 \cdot (-1 \cdot 6 - 3 \cdot -2) = 1 \cdot (-6 + 6) = 1 \cdot 0 = 0 \] ### Step 4: Conclusion The volume of the parallelepiped is: \[ V = |0| = 0 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the volume of the parallelopiped with segments AB, AC and AD as concurrent edges, where : (1) A-=(3,7,4),B-=(5,-2,3),C-=(-4,5,6)andD-=(1,2,3) (2) the position vectors of A,B,C,D are hat(i)+hat(j)+hat(k),2hat(i)-hat(j),3hat(i)-2hat(j)-2hat(k)and3hat(i)+3hat(j)+4hat(k) .

Volume of the parallelopiped having vertices at O-=(0,0,0) , A-=(2,-2,1),B-=(5,-4,4), and C= (1,-2,4) is

The area of the quadrilateral ABCD where A (0,4,1) , B(2,3,-1), c (4,5,0)and D(2,6,2) is to :

The area of the quadrilateral ABCD where A(0,4,1), B(2,3,-1), C(4,5,0) and D(2,6,2), is equal to

If A=[[3, -1, 4], [2, 3, 1]], B=[[1, 3, 4], [2, 1, 0], [-3, 2, 3]] find AB

Show that the points A(2, -1, 0) B(-3, 0, 4), C(-1, -1, 4) and D(0, -5, 2) are non coplanar.

If A,B,C and D are {3,7,4),(5,-2,-3),(-4,5,6) and (1,2,3) respectively, then the volume of the parallelopiped with AB, AC and AD as the co-terminus edges, is . . . Cubic units.

Find AB if A = [{:( 2,1,3),( 2, 9, 2 ),( 7, 4 , 3):}] and B = [{:( 1, 0 , 0),( 0,0,1),(0, 1, 0):}]

If A = [(-1),(2),(3)] and B = [(2,0,-4)] , then find AB .

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (j) Short Answer Type Questions
  1. Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), v...

    Text Solution

    |

  2. Show that if vec(a)+vec(b), vec(b)+vec(c ), vec(c )+vec(a) are coplana...

    Text Solution

    |

  3. If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c...

    Text Solution

    |

  4. Show that the vectors vec(a), vec(b), vec(c) are coplanar, when (i) ...

    Text Solution

    |

  5. Show that the following vectors are coplanar : -2hat(i)-2hat(j)+4...

    Text Solution

    |

  6. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  7. For what value of 'lambda' are the following vectors coplanar ? v...

    Text Solution

    |

  8. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  9. For what value of 'lambda' are the following vectors coplanar ? ve...

    Text Solution

    |

  10. Show that the four points A, B, C and D with position vectors 4hat(i)+...

    Text Solution

    |

  11. Show that the four points with position vectors4 hat i+8 hat j+12 hat ...

    Text Solution

    |

  12. Find lambda for which the points A(3,\ 2,\ 1),\ B(4,\ lambda,\ 5),\ C(...

    Text Solution

    |

  13. Find the value of 'x' for which the four points : A(x, -1, -1), B(4, 5...

    Text Solution

    |

  14. Find the value of 'x' such that four points with position vectors : A(...

    Text Solution

    |

  15. Show that the four points having position vectors 6 hat i-7 hat j ,...

    Text Solution

    |

  16. Find the volume of the parallelopiped whose sides are given by the vec...

    Text Solution

    |

  17. Find the volume of the parallelopiped with coteminous edges AB, AC an...

    Text Solution

    |