Home
Class 12
MATHS
Simplify (vec(b)+vec(c )).{(vec(c )+vec(...

Simplify `(vec(b)+vec(c )).{(vec(c )+vec(a))xx (vec(a)+vec(b))}`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((\vec{b} + \vec{c}) \cdot ((\vec{c} + \vec{a}) \times (\vec{a} + \vec{b}))\), we can follow these steps: ### Step 1: Identify the vectors Let: - \(\vec{x} = \vec{b} + \vec{c}\) - \(\vec{y} = \vec{c} + \vec{a}\) - \(\vec{z} = \vec{a} + \vec{b}\) Thus, we need to simplify \(\vec{x} \cdot (\vec{y} \times \vec{z})\). ### Step 2: Use the scalar triple product The expression \(\vec{x} \cdot (\vec{y} \times \vec{z})\) can be interpreted as the scalar triple product, which can be expressed as the determinant of a matrix formed by the vectors: \[ \vec{x} \cdot (\vec{y} \times \vec{z}) = \text{det}(\vec{x}, \vec{y}, \vec{z}) \] ### Step 3: Substitute the vectors Substituting the vectors back into the determinant: \[ \text{det}(\vec{b} + \vec{c}, \vec{c} + \vec{a}, \vec{a} + \vec{b}) \] ### Step 4: Expand the determinant Using the properties of determinants, we can expand this determinant: \[ \text{det}(\vec{b} + \vec{c}, \vec{c} + \vec{a}, \vec{a} + \vec{b}) = \text{det}(\vec{b}, \vec{c}, \vec{a}) + \text{det}(\vec{c}, \vec{a}, \vec{b}) + \text{det}(\vec{a}, \vec{b}, \vec{c}) \] This can be rewritten as: \[ = \text{det}(\vec{b}, \vec{c}, \vec{a}) + \text{det}(\vec{c}, \vec{a}, \vec{b}) + \text{det}(\vec{a}, \vec{b}, \vec{c}) \] ### Step 5: Combine the determinants Notice that the determinants can be rearranged: \[ = \text{det}(\vec{b}, \vec{c}, \vec{a}) + \text{det}(\vec{b}, \vec{a}, \vec{c}) + \text{det}(\vec{a}, \vec{b}, \vec{c}) \] Using the property of determinants that states that swapping two rows changes the sign of the determinant, we can see that: \[ \text{det}(\vec{c}, \vec{a}, \vec{b}) = -\text{det}(\vec{b}, \vec{c}, \vec{a}) \] Thus, the total simplifies to: \[ = 2 \cdot \text{det}(\vec{b}, \vec{c}, \vec{a}) \] ### Final Result The simplified expression is: \[ 2 \cdot \text{det}(\vec{b}, \vec{c}, \vec{a}) \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|40 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Short Answer Type Questions|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Prove that : (vec(b)+vec(c )).{(vec(c )+vec(a))xx(vec(a)+vec(b))}=2 [vec(a)vec(b)vec(c )] .

[(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(c) xx vec(a)),(vec(c) xx vec(a)) xx (vec(a) xx vec(b))] is equal to

Prove that : {(vec(b)-vec(c ))xx(vec(c )-vec(a))}.(vec(a)-vec(b))=0 .

Prove that : {(vec(b)+vec(c ))xx(vec(c )+vec(a))}.(vec(a)+vec(b))=2[vec(a)vec(b)vec(c )]

If vec(a).vec(b)xx vec(c ) ≠ 0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a').(vec(b')xx vec(c'))=(1)/(vec(a).(vec(b)xx vec(c )))

If vec(a).vec(b)xx vec(c )≠0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a).vec(a')+vec(b).vec(b')+vec(c ).vec(c')=3

If vec(a).vec(b)xx vec(c ) ≠ 0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a).vec(a')+vec(b). vec(b')+vec(c ). vec(c')=3 .

Prove that vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))=0

(vec(d) + vec(a)).(vec(a) xx (vec(b) xx (vec(c) xx vec(d)))) simplifies to

The vectors vec(a), vec(b), vec(c ) and vec(d) are such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c )= vec(b) xx vec(d) . Which of the following is/are correct? 1. (vec(a)- vec(d)) xx (vec(b) - vec(c ))= vec(0) 2. (vec(a) xx vec(b))xx (vec(c ) xx vec(d))= vec(0) Select the correct answer using the codes given below