Home
Class 12
MATHS
For three non-zero vectors vec(a),vec(b)...

For three non-zero vectors `vec(a),vec(b) " and"vec(c )`, prove that `[vec(a)-vec(b) vec(b)-vec(c ) vec(c )-vec(a)]=0`

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|40 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Short Answer Type Questions|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=0 , then prove that : vec(a)xx vec(b)=vec(b)xx vec(c )=vec(c )xx vec(a) and hence, show that [vec(a)vec(b)vec(c )]=0 .

If vec(a),vec(b) and vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=2,|vec(b)|=3 and |vec(c )|=5 , then the value of vec(a)*vec(b)+vec(b)*vec(c)+vec(c)*vec(a) is

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

For any three non-zero vectors vec a, vec b and vec c if | (vec a xxvec b) * vec c | = | vec a || vec b || vec c | then vec a * vec b + vec b * vec c + vec c * vec a =

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)xx vec(b)=vec(c ), vec(b)xx vec(c )=vec(a) , prove that vec(a), vec(b), vec(c ) are mutually at right angles and |vec(b)|=1, |vec(c )|=|vec(a)| .

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is vec(a). vec(b) + vec(b).vec(c)+ vec(c). vec(a) . equal to ?

If for three non zero vectors vec a,vec b and vec cvec a*vec b=vec a.vec c and vec a xxvec b=vec a xxvec c, the show that vec b=vec c .

Let vec a,vec b,vec c are three non-zero vectors such that vec a xxvec b=vec c and vec b xxvec c=vec a; prove that vec a,vec b,vec c are mutually at righ angles such that |vec b|=1 and |vec c|=|vec a|