Home
Class 12
MATHS
For any three coplanar vectors vec(a), v...

For any three coplanar vectors `vec(a), vec(b), vec(c )`, show that `vec(a)-vec(b), vec(b)-vec(c ), vec(c )-vec(a)` are coplanar.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|40 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Short Answer Type Questions|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=0 , then prove that : vec(a)xx vec(b)=vec(b)xx vec(c )=vec(c )xx vec(a) and hence, show that [vec(a)vec(b)vec(c )]=0 .

If vec(a),vec(b),vec(c) are three non-coplanar unit vector such that [vec(a),vec(b),vec(c)]=3 then [ vec(a) times vec(b), vec(b) times vec (c),vec(c) times vec(a) ] equals

If vec(a), vec(b) and vec(c ) are mutually perpendicular unit vectors and vec(a)xx vec(b)=vec(c ) , show that vec(b)=vec(c )xx vec(a) and vec(a)=vec(b)xx vec(c ) .

For any three vectors vec a,vec b,vec c show that vec a xx(vec b+vec c)+vec b xx(vec c+vec a)+vec c xx(vec a+vec b)=vec 0

If any two of three vectors vec(a), vec(b), vec(c ) are parallel, then [vec(a)vec(b)vec(c )]= __________.

If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=3, |vec(b)| =4 and |vec(c )|=5 , then show that vec(a).vec(b)+vec(b).vec(c )+vec(c ). vec(a)=-25 .

For any three vectors vec a, vec b, vec c, (vec a-vec b) * (vec b-vec c) xx (vec c-vec a) is equal to