Home
Class 12
MATHS
(hat(k)xx hat(i)).hat(j)+hat(i).hat(k) ...

`(hat(k)xx hat(i)).hat(j)+hat(i).hat(k)` …………..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\hat{k} \times \hat{i}) \cdot \hat{j} + \hat{i} \cdot \hat{k}\), we will break it down step by step. ### Step 1: Calculate \(\hat{k} \times \hat{i}\) Using the right-hand rule for cross products, we know: \[ \hat{k} \times \hat{i} = \hat{j} \] This is because when you point your fingers in the direction of \(\hat{k}\) (upwards) and curl them towards \(\hat{i}\) (to the right), your thumb points in the direction of \(\hat{j}\) (outwards). ### Step 2: Substitute into the expression Now we can substitute this result back into the original expression: \[ (\hat{k} \times \hat{i}) \cdot \hat{j} = \hat{j} \cdot \hat{j} \] ### Step 3: Calculate \(\hat{j} \cdot \hat{j}\) The dot product of a unit vector with itself is equal to 1: \[ \hat{j} \cdot \hat{j} = 1 \] ### Step 4: Calculate \(\hat{i} \cdot \hat{k}\) Next, we compute the dot product \(\hat{i} \cdot \hat{k}\). Since \(\hat{i}\) and \(\hat{k}\) are perpendicular to each other: \[ \hat{i} \cdot \hat{k} = 0 \] ### Step 5: Combine the results Now we can combine the results from Steps 3 and 4: \[ (\hat{k} \times \hat{i}) \cdot \hat{j} + \hat{i} \cdot \hat{k} = 1 + 0 = 1 \] ### Final Answer Thus, the final value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (D. Very Short Answers Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|40 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

(hat(k)xx hat(j)).hat(i)+hat(j).hat(k)= ………….

Find the value of : (i) (hat(i) xxhat(j))*hat (k) + hat(i)* hat(j) (ii) (hat(k) xx hat(j))* hat(i) +hat(j)* hat(k) hat(i) xx (hat(j) + hat(k) )+hat(j) xx(hat(k) +hat(i))+ hat(k) xx (hat(i)+hat(j))

Write the value of hat(i).(hat(j)xxhat(k))+hat(j).(hat(i)xxhat(k))+hat(k).(hat(i)xxhat(j)) .

(hat(i) + hat(j) - hat(k)).(hat(i) - hat(j) + hat(k)) =_________

Prove that (i) [hat(i)hat(j)hat(k)]=[hat(j)hat(k)hat(i)]=[hat(k)hat(j)hat(i)]=1 (ii) [hat(i)hat(k)hat(j)]=[hat(k)hat(j)hat(i)]=[hat(j)hat(i)hat(k)]=1

The volume of the tetrahedron whose co-terminous edges are hat(j)+hat(k), hat(k)+hat(i), hat(i)+hat(j) is

[[hat(i), hat(j), hat(k)]]+[[hat(k), hat(j), hat(i)]]+[[hat(j), hatk, hat(i)]]=

hat(i)*(hat(j)timeshat(k))+hat(j)*(hat(k)timeshat(i))+hat(k)*(hat(i)timeshat(j))=

If a=hat(i)+hat(j)+hat(k) and b=hat(i)-hat(j) , then the vectors (a*hat(i))hat(i)+(a*hat(j))hat(j)+(a*hat(k))hat(k), (b*hat(i))hat(i)+(b*hat(j))hat(j)+(b*hat(k))hat(k) and hat(i)+hat(j)-2hat(k)

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (B. Fill in the Blanks)
  1. The magnitude of projection of (2hat(i)-hat(j)+hat(k)) " on" (hat(i)-2...

    Text Solution

    |

  2. Vector of magnitude 5 units and in the direction opposite to 2hat(i)+3...

    Text Solution

    |

  3. Find the sum of vectors vec a= hat i-2 hat j+ hat k ,\ vec b=-2 hat ...

    Text Solution

    |

  4. The value of 'a' when the vectors : 2hat(i)-3hat(j)+4hat(k) and a...

    Text Solution

    |

  5. If vec(a)=2hat(i)+hat(j)-2hat(k), then |vec(a)|= .

    Text Solution

    |

  6. The direction - ratios of the vector vec(a)=6hat(i)-3hat(j)+2hat(k) ar...

    Text Solution

    |

  7. Find the projection of the vector hat i- hat jon the vector hat i+ ...

    Text Solution

    |

  8. If vec a is a unit vector and (vec x - vec a).(vec x + vec a)=8, then ...

    Text Solution

    |

  9. If vec(p) is a unit vector and (vec(x)-vec(p)).(vec(x)+vec(p))=80, the...

    Text Solution

    |

  10. Angle between hat(i)-hat(j) and hat(j)-hat(k) is .

    Text Solution

    |

  11. Find the value of : (i) (hat(i) xxhat(j))*hat (k) + hat(i)* hat(j) ...

    Text Solution

    |

  12. (hat(k)xx hat(j)).hat(i)+hat(j).hat(k)= ………….

    Text Solution

    |

  13. (hat(k)xx hat(i)).hat(j)+hat(i).hat(k) …………..

    Text Solution

    |

  14. Find lambda if (2 hat i+6 hat j+14 hat k)x\ ( hat i-\ lambda hat j+7 h...

    Text Solution

    |

  15. The magnitude of vec(a)xx vec(b) if vec(a)=2hat(i)+hat(k) and vec(b)...

    Text Solution

    |

  16. If any two of three vectors vec(a), vec(b), vec(c ) are parallel, then...

    Text Solution

    |

  17. The value of 'lambda' such that the vectors : 3hat(i)+lambdahat(j)+5...

    Text Solution

    |